Menu Close

prove-for-0-lt-a-lt-2-0-x-a-1-dx-1-x-x-2-2pi-3-cos-2pia-pi-6-cosec-pia-




Question Number 88547 by ajfour last updated on 11/Apr/20
prove for (0<a<2)  ∫_0 ^( ∞) ((x^(a−1) dx)/(1+x+x^2 )) = ((2π)/( (√3)))cos (((2πa+π)/6))cosec πa .
provefor(0<a<2)0xa1dx1+x+x2=2π3cos(2πa+π6)cosecπa.
Answered by mind is power last updated on 12/Apr/20
∫_(−∞) ^(+∞) (x^(a−1) /(1+x+x^2 ))dx=∫_0 ^∞ ((x^(a−1) dx)/(1+x+x^2 ))+∫_0 ^(+∞) (((−1)^(a−1) x^(a−1) )/(1−x+x^2 ))dx  =∫_C_R  (x^(a−1) /(1+x+x^2 ))dx≤∫_0 ^π ((R^a e^(i(a−1)π) )/(R^2 −R+1))→0  ⇒∫_0 ^(+∞) ((e^(iπ(a−1)) x^(a−1) )/(x^2 −x+1))dx+∫_0 ^∞ ((x^(a−1) dx)/(x^2 +x+1))=2iπRes((z^(a−1) /(z^2 +z+1)),e^(i((2π)/3)) )  =((2iπe^(i(a−1)((2π)/3)) )/((3e^((2iπ)/3) +1)))=−isin(πa)∫_0 ^∞ ((x^(a−1) dx)/(x^2 −x+1))+−cos(πa)∫_0 ^(+∞) ((x^(a−1) dx)/(x^2 −x+1))  +∫_0 ^∞ ((x^(a−1) dx)/(x^2 +x+1))  ((2iπe^(i(a−1)((2π)/3)) )/(2(−(1/2)+((i(√3))/2))+1))=((2iπe^(i(a−1)((2π)/3)) )/(i(√3)))=((2π)/( (√3)))(cos(((2π(a−1))/3))+isin(((2π(a−1))/3)))  =−isin(πa)∫_0 ^∞ ((x^(a−1) dx)/(x^2 −x+1))−cos(πa)∫_0 ^∞ ((x^(a−1) dx)/(x^2 −x+1))+∫_0 ^(+∞) ((x^(a−1) dx)/(x^2 +x+1))  ⇒((2iπ)/( (√3)))sin(((2π(a−1))/3))=−isin(πa)∫_0 ^(+∞) ((x^(a−1) dx)/(x^2 −x+1))  ⇒∫_0 ^(+∞) ((x^(a−1) dx)/(x^2 −x+1))=((−2πsin(((2π(a−1))/3)))/(sin(πa)(√3)))   ∫_0 ^(+∞) ((x^(a−1) dx)/(x^2 +x+1))=((2π)/( (√3)))cos(((2π(a−1))/3))+((−2πsin(((2π(a−1))/3))cos(πa))/(sin(πa)(√3)))  =((2π)/( (√3))).(1/(sin(πa))){cos(((2π(a−1))/3))sin(πa)−sin(((2π(a−1))/3))cos(πa))  =((2π)/(sin(πa)(√3))){sin(πa−((2π(a−1))/3))}  =((2π)/( (√3)sin(πa))){sin(((πa)/3)+((2π)/3))}  =((2π)/(sin(πa)(√3)))cos((π/2)−((πa)/3)−((2π)/3))=((2π)/(sin(πa)(√3)))(cos(((−πa)/3)−(π/6)))  =((2π)/(sin(πa)(√3)))cos(((2πa+π)/6))=((2π)/( (√3)))cos(((2πa+π)/6))cosec(πa)
+xa11+x+x2dx=0xa1dx1+x+x2+0+(1)a1xa11x+x2dx=CRxa11+x+x2dx0πRaei(a1)πR2R+100+eiπ(a1)xa1x2x+1dx+0xa1dxx2+x+1=2iπRes(za1z2+z+1,ei2π3)=2iπei(a1)2π3(3e2iπ3+1)=isin(πa)0xa1dxx2x+1+cos(πa)0+xa1dxx2x+1+0xa1dxx2+x+12iπei(a1)2π32(12+i32)+1=2iπei(a1)2π3i3=2π3(cos(2π(a1)3)+isin(2π(a1)3))=isin(πa)0xa1dxx2x+1cos(πa)0xa1dxx2x+1+0+xa1dxx2+x+12iπ3sin(2π(a1)3)=isin(πa)0+xa1dxx2x+10+xa1dxx2x+1=2πsin(2π(a1)3)sin(πa)30+xa1dxx2+x+1=2π3cos(2π(a1)3)+2πsin(2π(a1)3)cos(πa)sin(πa)3=2π3.1sin(πa){cos(2π(a1)3)sin(πa)sin(2π(a1)3)cos(πa))=2πsin(πa)3{sin(πa2π(a1)3)}=2π3sin(πa){sin(πa3+2π3)}=2πsin(πa)3cos(π2πa32π3)=2πsin(πa)3(cos(πa3π6))=2πsin(πa)3cos(2πa+π6)=2π3cos(2πa+π6)cosec(πa)
Commented by ajfour last updated on 12/Apr/20
Thank you sir, hope you liked  solving it.
Thankyousir,hopeyoulikedsolvingit.
Commented by mind is power last updated on 12/Apr/20
nice one Sir  since 4 or 5 month ago i lost my motivation  lost pleasur of solving problemes i dont know why!
niceoneSirsince4or5monthagoilostmymotivationlostpleasurofsolvingproblemesidontknowwhy!

Leave a Reply

Your email address will not be published. Required fields are marked *