prove-for-0-lt-a-lt-2-0-x-a-1-dx-1-x-x-2-2pi-3-cos-2pia-pi-6-cosec-pia- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 88547 by ajfour last updated on 11/Apr/20 provefor(0<a<2)∫0∞xa−1dx1+x+x2=2π3cos(2πa+π6)cosecπa. Answered by mind is power last updated on 12/Apr/20 ∫−∞+∞xa−11+x+x2dx=∫0∞xa−1dx1+x+x2+∫0+∞(−1)a−1xa−11−x+x2dx=∫CRxa−11+x+x2dx⩽∫0πRaei(a−1)πR2−R+1→0⇒∫0+∞eiπ(a−1)xa−1x2−x+1dx+∫0∞xa−1dxx2+x+1=2iπRes(za−1z2+z+1,ei2π3)=2iπei(a−1)2π3(3e2iπ3+1)=−isin(πa)∫0∞xa−1dxx2−x+1+−cos(πa)∫0+∞xa−1dxx2−x+1+∫0∞xa−1dxx2+x+12iπei(a−1)2π32(−12+i32)+1=2iπei(a−1)2π3i3=2π3(cos(2π(a−1)3)+isin(2π(a−1)3))=−isin(πa)∫0∞xa−1dxx2−x+1−cos(πa)∫0∞xa−1dxx2−x+1+∫0+∞xa−1dxx2+x+1⇒2iπ3sin(2π(a−1)3)=−isin(πa)∫0+∞xa−1dxx2−x+1⇒∫0+∞xa−1dxx2−x+1=−2πsin(2π(a−1)3)sin(πa)3∫0+∞xa−1dxx2+x+1=2π3cos(2π(a−1)3)+−2πsin(2π(a−1)3)cos(πa)sin(πa)3=2π3.1sin(πa){cos(2π(a−1)3)sin(πa)−sin(2π(a−1)3)cos(πa))=2πsin(πa)3{sin(πa−2π(a−1)3)}=2π3sin(πa){sin(πa3+2π3)}=2πsin(πa)3cos(π2−πa3−2π3)=2πsin(πa)3(cos(−πa3−π6))=2πsin(πa)3cos(2πa+π6)=2π3cos(2πa+π6)cosec(πa) Commented by ajfour last updated on 12/Apr/20 Thankyousir,hopeyoulikedsolvingit. Commented by mind is power last updated on 12/Apr/20 niceoneSirsince4or5monthagoilostmymotivationlostpleasurofsolvingproblemesidontknowwhy! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-154078Next Next post: 0-pi-2-ln-2-1-sin-t-1-sin-t-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.