Menu Close

prove-for-r-n-N-k-r-n-k-r-n-1-r-1-Hockey-stick-identity-




Question Number 185659 by mr W last updated on 25/Jan/23
prove for r, n ∈ N  Σ_(k=r) ^n  ((k),(r) ) = (((n+1)),((r+1)) )  (Hockey−stick identity)
proveforr,nNnk=r(kr)=(n+1r+1)(Hockeystickidentity)
Commented by mr W last updated on 25/Jan/23
Answered by mr W last updated on 25/Jan/23
 (((n+1)),((r+1)) )   = ((n),(r) )+ ((n),((r+1)) )  = ((n),(r) )+ (((n−1)),(r) )+ (((n−1)),((r+1)) )  = ((n),(r) )+ (((n−1)),(r) )+ (((n−2)),(r) )+ (((n−2)),((r+1)) )  ......  = ((n),(r) )+ (((n−1)),(r) )+ (((n−2)),(r) )+...+ (((r+1)),(r) )+ (((r+1)),((r+1)) )  = ((n),(r) )+ (((n−1)),(r) )+ (((n−2)),(r) )+...+ (((r+1)),(r) )+ ((r),(r) )  =Σ_(k=r) ^n  ((k),(r) )
(n+1r+1)=(nr)+(nr+1)=(nr)+(n1r)+(n1r+1)=(nr)+(n1r)+(n2r)+(n2r+1)=(nr)+(n1r)+(n2r)++(r+1r)+(r+1r+1)=(nr)+(n1r)+(n2r)++(r+1r)+(rr)=nk=r(kr)
Commented by cortano1 last updated on 25/Jan/23
yes...great
yesgreat

Leave a Reply

Your email address will not be published. Required fields are marked *