Menu Close

Prove-it-by-mathematical-induction-j-1-n-x-j-j-1-n-sin-x-j-x-j-0-pi-




Question Number 181699 by Shrinava last updated on 28/Nov/22
Prove it by mathematical induction:  ∣  Σ_(j=1) ^n  x_j   ∣  ≤  Σ_(j=1) ^n  sin x_j      ;     x_j  ∈ [ 0 , π ]
Proveitbymathematicalinduction:nj=1xjnj=1sinxj;xj[0,π]
Commented by mr W last updated on 28/Nov/22
what if x_j =(π/2)?  LHS=n×(π/2)  RHS=n×1=n  LHS>RHS !   ⇒question is wrong!
whatifxj=π2?LHS=n×π2RHS=n×1=nLHS>RHS!questioniswrong!

Leave a Reply

Your email address will not be published. Required fields are marked *