Menu Close

prove-it-lim-n-i-1-n-cos-2-i-sin-then-show-im-n-cos-pi-4-cos-pi-8-cos-pi-2-n-1-2-pi-




Question Number 192985 by MM42 last updated on 01/Jun/23
prove it :  lim_(n→∞)  Π_(i=1) ^n cos(θ/2^i )=((sinθ)/θ)  then show :  im_(n→∞)  cos(π/4)cos(π/8)...cos(π/2^(n+1) ) =(2/π)
$${prove}\:{it}\:: \\ $$$${lim}_{{n}\rightarrow\infty} \:\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}{cos}\frac{\theta}{\mathrm{2}^{{i}} }=\frac{{sin}\theta}{\theta} \\ $$$${then}\:{show}\:: \\ $$$${im}_{{n}\rightarrow\infty} \:{cos}\frac{\pi}{\mathrm{4}}{cos}\frac{\pi}{\mathrm{8}}…{cos}\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\:=\frac{\mathrm{2}}{\pi} \\ $$$$ \\ $$
Answered by witcher3 last updated on 02/Jun/23
cos((θ/2^i ))=((sin((θ/2^(i−1) )))/(2sin((θ/2^i ))))  A_n =Π_(i=1) ^n cos((θ/2^i ))=Π_1 ^n ((sin((θ/2^(i−1) )))/(2sin((θ/2^i ))))=((sin(θ))/(2^n sin((θ/2^n ))))  sin((θ/2^n ))∼(θ/2^n )⇒lim_(n→∞) A_n =lim_(n→∞) .((sin(θ))/(2^n .(θ/2^n )))=((sin(θ))/θ)  (2)θ=(π/2)
$$\mathrm{cos}\left(\frac{\theta}{\mathrm{2}^{\mathrm{i}} }\right)=\frac{\mathrm{sin}\left(\frac{\theta}{\mathrm{2}^{\mathrm{i}−\mathrm{1}} }\right)}{\mathrm{2sin}\left(\frac{\theta}{\mathrm{2}^{\mathrm{i}} }\right)} \\ $$$$\mathrm{A}_{\mathrm{n}} =\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\mathrm{cos}\left(\frac{\theta}{\mathrm{2}^{\mathrm{i}} }\right)=\underset{\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\frac{\mathrm{sin}\left(\frac{\theta}{\mathrm{2}^{\mathrm{i}−\mathrm{1}} }\right)}{\mathrm{2sin}\left(\frac{\theta}{\mathrm{2}^{\mathrm{i}} }\right)}=\frac{\mathrm{sin}\left(\theta\right)}{\mathrm{2}^{\mathrm{n}} \mathrm{sin}\left(\frac{\theta}{\mathrm{2}^{\mathrm{n}} }\right)} \\ $$$$\mathrm{sin}\left(\frac{\theta}{\mathrm{2}^{\mathrm{n}} }\right)\sim\frac{\theta}{\mathrm{2}^{\mathrm{n}} }\Rightarrow\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}A}_{\mathrm{n}} =\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}.\frac{\mathrm{sin}\left(\theta\right)}{\mathrm{2}^{\mathrm{n}} .\frac{\theta}{\mathrm{2}^{\mathrm{n}} }}=\frac{\mathrm{sin}\left(\theta\right)}{\theta} \\ $$$$\left(\mathrm{2}\right)\theta=\frac{\pi}{\mathrm{2}} \\ $$
Commented by MM42 last updated on 02/Jun/23
very good
$${very}\:{good} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *