Menu Close

prove-it-lim-n-i-1-n-cos-2-i-sin-then-show-im-n-cos-pi-4-cos-pi-8-cos-pi-2-n-1-2-pi-




Question Number 192985 by MM42 last updated on 01/Jun/23
prove it :  lim_(n→∞)  Π_(i=1) ^n cos(θ/2^i )=((sinθ)/θ)  then show :  im_(n→∞)  cos(π/4)cos(π/8)...cos(π/2^(n+1) ) =(2/π)
proveit:limnni=1cosθ2i=sinθθthenshow:imncosπ4cosπ8cosπ2n+1=2π
Answered by witcher3 last updated on 02/Jun/23
cos((θ/2^i ))=((sin((θ/2^(i−1) )))/(2sin((θ/2^i ))))  A_n =Π_(i=1) ^n cos((θ/2^i ))=Π_1 ^n ((sin((θ/2^(i−1) )))/(2sin((θ/2^i ))))=((sin(θ))/(2^n sin((θ/2^n ))))  sin((θ/2^n ))∼(θ/2^n )⇒lim_(n→∞) A_n =lim_(n→∞) .((sin(θ))/(2^n .(θ/2^n )))=((sin(θ))/θ)  (2)θ=(π/2)
cos(θ2i)=sin(θ2i1)2sin(θ2i)An=ni=1cos(θ2i)=n1sin(θ2i1)2sin(θ2i)=sin(θ)2nsin(θ2n)Double subscripts: use braces to clarify(2)θ=π2
Commented by MM42 last updated on 02/Jun/23
very good
verygood

Leave a Reply

Your email address will not be published. Required fields are marked *