Menu Close

prove-it-tan-pi-3-tan-pi-3-4sin-2-1-4sin-2-




Question Number 20647 by oyshi last updated on 30/Aug/17
prove it,  tan (α+(π/3))+tan (α−(π/3))=((4sin 2α)/(1−4sin^2 α))
proveit,tan(α+π3)+tan(απ3)=4sin2α14sin2α
Answered by $@ty@m last updated on 30/Aug/17
LHS=((tanα+tan(π/3))/(1−tanα.tan(π/3)))+((tanα−tan(π/3))/(1+tanα.tan(π/3)))  =((tanα+(√3))/(1−(√3).tanα))+((tanα−(√3))/(1+(√3).tanα))  =(((1+(√3).tanα)(tanα+(√3))+(1−(√3).tanα)(tanα−(√3)))/((1−(√3).tanα)(1+(√3).tanα)))  =((tanα+(√3)tan^2 α+3tanα+(√3)+tanα−(√3)tan^2 α−(√3)+3tanα)/(1−3tan^2 α))  =((8tanα)/(1−3tan^2 α))=((4sin2α)/(cos^2 α−3sin^2 α))                          (multiplying N^r  & D^r  by cos^2 α)  =((4sin2α)/(1−sin^2 α−3sin^2 α))  =((4sin 2α)/(1−4sin^2 α))  =RHS
LHS=tanα+tanπ31tanα.tanπ3+tanαtanπ31+tanα.tanπ3=tanα+313.tanα+tanα31+3.tanα=(1+3.tanα)(tanα+3)+(13.tanα)(tanα3)(13.tanα)(1+3.tanα)=tanα+3tan2α+3tanα+3+tanα3tan2α3+3tanα13tan2α=8tanα13tan2α=4sin2αcos2α3sin2α(multiplyingNr&Drbycos2α)=4sin2α1sin2α3sin2α=4sin2α14sin2α=RHS

Leave a Reply

Your email address will not be published. Required fields are marked *