Menu Close

prove-it-times-n-4-4-4-4-lt-3-




Question Number 192062 by mehdee42 last updated on 07/May/23
prove it :      times_n   ;   (√(4+(√(4+(√(4+...+(√4)))))  )) < 3
proveit:times_n;4+4+4++4<3
Commented by ajfour last updated on 08/May/23
but 4> 3      how can this be...  really no use arguing!
but4>3howcanthisbereallynousearguing!
Commented by ajfour last updated on 08/May/23
sometimes it just really dont make no sense et al.
Commented by mehdee42 last updated on 08/May/23
pay attention to question     that is ((√4)<3 ) right , not what you wrote (4>3)
payattentiontoquestionthatis(4<3)right,notwhatyouwrote(4>3)
Answered by Frix last updated on 07/May/23
x=(√(4+(√(4+(√(4+...))))))>0  x=(√(4+x))  x^2 −x−4=0  x=((1+(√(17)))/2)  ((1+(√(17)))/2)<3  1+(√(17))<6  (√(17))<5  17<25 true
x=4+4+4+>0x=4+xx2x4=0x=1+1721+172<31+17<617<517<25true
Commented by mehdee42 last updated on 07/May/23
pay  attention :  (√(4+(√(4+(√(4+....)))))) ≠ (√(4+(√(4+(√(4+...(√4)))))))   ⇒ if   x=(√(4+(√(4+(√(4+...(√4)))))))⇏x^2 =4+x  the expression on the left contains the infinitive of the   sentence .while the number of  sentenes   in thr right experession is finit.
payattention:4+4+4+.4+4+4+4ifx=4+4+4+4x2=4+xtheexpressionontheleftcontainstheinfinitiveofthesentence.whilethenumberofsentenesinthrrightexperessionisfinit.
Commented by Frix last updated on 07/May/23
x=((1+(√(17)))/2)  (√4)<(√(4+(√4)))<(√(4+(√(4+(√4)))))<...<x<3
x=1+1724<4+4<4+4+4<<x<3
Commented by mehdee42 last updated on 07/May/23
why  “...< x <3 ” ?!
why<x<3?!
Commented by AST last updated on 07/May/23
Let 4_n =(√(4+(√(4+(√(4+...+(√4))))))) (where 4 appears n  times)  4_n <4_p  when n<p...(i)  This is true since 4_n =(√(4+z)) and z increases as  n increases.  since 4_∞ <3,(i)⇒4_n <4_∞ <3  Hence,we have shown that for all n,4_n <3.
Let4n=4+4+4++4(where4appearsntimes)4n<4pwhenn<p(i)Thisistruesince4n=4+zandzincreasesasnincreases.since4<3,(i)4n<4<3Hence,wehaveshownthatforalln,4n<3.
Commented by mehdee42 last updated on 07/May/23
sir  why  4_n <4_∞ <3  ??
sirwhy4n<4<3??
Commented by mehdee42 last updated on 07/May/23
it can be proven by a very simple   mahematical induction metod  good luck
itcanbeprovenbyaverysimplemahematicalinductionmetodgoodluck
Answered by mehdee42 last updated on 08/May/23
answer to question number   let : p_n = n_ termes   (√(4+(√(4+(√(4+...+(√4))))) ))<3   p_1  =(√4)=2<3 ✓      i.s  p_k  = (k _ termes ) (√(4+(√(4+(√(4+....+(√4)))))))<3    i.h   p_(k+1)  =(k+1 _ termes)   (√(4+(√(4+(√(4+...+(√4))))))) <3   ?  i.r  p_(k+1) ^2  =4+(k_termes) (√(4+(√(4+(√(4+...+(√4))))) ))<4+3=7   ⇒ p_(k+1) <(√7)<3 ✓
answertoquestionnumberlet:pn=n_termes4+4+4++4<3p1=4=2<3i.spk=(k_termes)4+4+4+.+4<3i.hpk+1=(k+1_termes)4+4+4++4<3?i.rpk+12=4+(k_termes)4+4+4++4<4+3=7pk+1<7<3

Leave a Reply

Your email address will not be published. Required fields are marked *