Menu Close

Prove-lim-x-1-1-x-ln-1-x-0-




Question Number 26591 by prakash jain last updated on 27/Dec/17
Prove  lim_(x→−1) (1+x)ln (1+x)=0
$$\mathrm{Prove} \\ $$$$\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\left(\mathrm{1}+{x}\right)\mathrm{ln}\:\left(\mathrm{1}+{x}\right)=\mathrm{0} \\ $$
Commented by abdo imad last updated on 27/Dec/17
let put 1+x=u   ⇒ lim_(x−>−1^+ )  (1+x)ln(1+x)  =lim_(u−>0^+ )   ulnu =0
$${let}\:{put}\:\mathrm{1}+{x}={u}\:\:\:\Rightarrow\:{lim}_{{x}−>−\mathrm{1}^{+} } \:\left(\mathrm{1}+{x}\right){ln}\left(\mathrm{1}+{x}\right)\:\:={lim}_{{u}−>\mathrm{0}^{+} } \:\:{ulnu}\:=\mathrm{0} \\ $$
Answered by ajfour last updated on 27/Dec/17
L=lim_(x→−1)  ((ln (1+x))/(((1/(1+x)))))   =lim_(x→−1)  [−(((1+x)^2 )/(1+x))]=−lim_(x→−1)  (1+x)=0 .
$${L}=\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left(\mathrm{1}+{x}\right)}{\left(\frac{\mathrm{1}}{\mathrm{1}+{x}}\right)} \\ $$$$\:=\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\:\left[−\frac{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{\mathrm{1}+{x}}\right]=−\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\:\left(\mathrm{1}+{x}\right)=\mathrm{0}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *