prove-lnx-x- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 54730 by yorrick23ralph@gmail.com last updated on 09/Feb/19 provelnx⩽x Commented by Abdo msup. last updated on 09/Feb/19 firstx>0letf(x)=x−ln(x)⇒f′(x)=1−1x=x−1xandf′(x)⩾0⇔x⩾1limx→0+f(x)=+∞andlimx→+∞f(x)=limx→+∞x(1−lnxx)=lim+∞x=+∞variationoff(x)x01+∞f′(x)−+f(x)+∞dec1inc+∞weseethatf(x)⩾0∀x>0⇒ln(x)⩽x∀x>0 Commented by yorrick23ralph@gmail.com last updated on 09/Feb/19 thankssir Commented by mr W last updated on 10/Feb/19 x<ex⇒lnx<x(notlnx⩽x) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-185799Next Next post: Question-185800 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.