Menu Close

prove-n-0-sinx-2n-sec-2-x-




Question Number 156795 by tabata last updated on 15/Oct/21
prove Σ_(n=0) ^∞ (sinx)^(2n) =sec^2 x ???
proven=0(sinx)2n=sec2x???
Answered by FongXD last updated on 15/Oct/21
we have: Σ_(n=0) ^∞ (sinx)^(2n) =Σ_(n=0) ^∞ (sin^2 x)^n   since −1≤sinx≤1, ⇒ 0≤sin^2 x<1, ∀x∈R-{(π/2)(4k±1), k∈Z}  therefore, Σ_(n=0) ^∞ (sin^2 x)^n  is the infinite sum of the geometric sequence  whose first term is (sin^2 x)^0 =1 and common ratio r=sin^2 x  Formula: S_∞ =(u_1 /(1−q))  we get: Σ_(n=0) ^∞ (sin^2 x)^n =(1/(1−sin^2 x))=(1/(cos^2 x))=sec^2 x   ✓  therefore.  determinant (((Σ_(n=0) ^∞ (sinx)^(2n) =sec^2 x is indeed true)))
wehave:n=0(sinx)2n=n=0(sin2x)nsince1sinx1,0sin2x<1,xR{π2(4k±1),kZ}therefore,n=0(sin2x)nistheinfinitesumofthegeometricsequencewhosefirsttermis(sin2x)0=1andcommonratior=sin2xFormula:S=u11qweget:n=0(sin2x)n=11sin2x=1cos2x=sec2xtherefore.n=0(sinx)2n=sec2xisindeedtrue
Commented by Ruuudiy last updated on 17/Oct/21
Thanks Ser. Σ_(n=0) ^∞ (sin x)^(2n) =sec^2 x is indeed true.
ThanksSer.n=0(sinx)2n=sec2xisindeedtrue.
Answered by som(math1967) last updated on 15/Oct/21
1+sin^2 x+sin^4 x+...∞  =(1/(1−sin^2 x))=(1/(cos^2 x))=sec^2 x
1+sin2x+sin4x+=11sin2x=1cos2x=sec2x

Leave a Reply

Your email address will not be published. Required fields are marked *