prove-n-0-sinx-2n-sec-2-x- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 156795 by tabata last updated on 15/Oct/21 prove∑∞n=0(sinx)2n=sec2x??? Answered by FongXD last updated on 15/Oct/21 wehave:∑∞n=0(sinx)2n=∑∞n=0(sin2x)nsince−1⩽sinx⩽1,⇒0⩽sin2x<1,∀x∈R−{π2(4k±1),k∈Z}therefore,∑∞n=0(sin2x)nistheinfinitesumofthegeometricsequencewhosefirsttermis(sin2x)0=1andcommonratior=sin2xFormula:S∞=u11−qweget:∑∞n=0(sin2x)n=11−sin2x=1cos2x=sec2x✓therefore.∑∞n=0(sinx)2n=sec2xisindeedtrue Commented by Ruuudiy last updated on 17/Oct/21 ThanksSer.∑∞n=0(sinx)2n=sec2xisindeedtrue. Answered by som(math1967) last updated on 15/Oct/21 1+sin2x+sin4x+…∞=11−sin2x=1cos2x=sec2x Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-156789Next Next post: prove-that-2-F-1-a-1-1-a-1-2-1-1-2-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.