Menu Close

prove-n-1-3-n-lt-n-




Question Number 173815 by mr W last updated on 18/Jul/22
prove   (((n+1)/3))^n <n!
prove(n+13)n<n!
Commented by mr W last updated on 19/Jul/22
good idea sir! thanks!  n!≈(√(2πn))((n/e))^n   lim_(n→∞) ((n+1)/( ((n!))^(1/n) ))  =lim_(n→∞) (((n+1))/((2nπ)^(1/(2n)) ((n/e))))  =lim_(n→∞) (e/(((π/(1/(2n))))^(1/(2n)) ))(1+(1/n))  =lim_(n→∞) (e/(((π/(1/(2n))))^(1/(2n)) ))  =lim_(x→0) (e/(((π/x))^x ))  =(e/1)  =e < 3
goodideasir!thanks!n!2πn(ne)nlimnn+1n!n=limn(n+1)(2nπ)12n(ne)=limne(π12n)12n(1+1n)=limne(π12n)12n=limx0e(πx)x=e1=e<3
Commented by Frix last updated on 18/Jul/22
⇔  3>((n+1)/( ((n!))^(1/n) ))  lim_(n→∞)  ((n+1)/( ((n!))^(1/n) )) =e<3  just a idea...
3>n+1n!nlimnn+1n!n=e<3justaidea

Leave a Reply

Your email address will not be published. Required fields are marked *