Question Number 173815 by mr W last updated on 18/Jul/22
$${prove}\: \\ $$$$\left(\frac{{n}+\mathrm{1}}{\mathrm{3}}\right)^{{n}} <{n}! \\ $$
Commented by mr W last updated on 19/Jul/22
$${good}\:{idea}\:{sir}!\:{thanks}! \\ $$$${n}!\approx\sqrt{\mathrm{2}\pi{n}}\left(\frac{{n}}{{e}}\right)^{{n}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{n}+\mathrm{1}}{\:\sqrt[{{n}}]{{n}!}} \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\left({n}+\mathrm{1}\right)}{\left(\mathrm{2}{n}\pi\right)^{\frac{\mathrm{1}}{\mathrm{2}{n}}} \left(\frac{{n}}{{e}}\right)} \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{e}}{\left(\frac{\pi}{\frac{\mathrm{1}}{\mathrm{2}{n}}}\right)^{\frac{\mathrm{1}}{\mathrm{2}{n}}} }\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{e}}{\left(\frac{\pi}{\frac{\mathrm{1}}{\mathrm{2}{n}}}\right)^{\frac{\mathrm{1}}{\mathrm{2}{n}}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}}{\left(\frac{\pi}{{x}}\right)^{{x}} } \\ $$$$=\frac{{e}}{\mathrm{1}} \\ $$$$={e}\:<\:\mathrm{3} \\ $$
Commented by Frix last updated on 18/Jul/22
$$\Leftrightarrow \\ $$$$\mathrm{3}>\frac{{n}+\mathrm{1}}{\:\sqrt[{{n}}]{{n}!}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{n}+\mathrm{1}}{\:\sqrt[{{n}}]{{n}!}}\:=\mathrm{e}<\mathrm{3} \\ $$$$\mathrm{just}\:\mathrm{a}\:\mathrm{idea}… \\ $$