prove-n-1-9n-4-3n-3n-1-3n-2-3-2-ln-3- Tinku Tara June 4, 2023 Arithmetic 0 Comments FacebookTweetPin Question Number 97956 by M±th+et+s last updated on 10/Jun/20 prove∑∞n=19n+43n(3n+1)(3n+2)=32−ln(3) Answered by maths mind last updated on 13/Jun/20 =∑n⩾14(3n+1)−3n3n(3n+1)(3n+2)=4Σ13n(3n+2)−Σ1(3n+1)(3n+2)=49∑n⩾11n(n+23)−19∑n⩾11(n+13)(n+23)=49∑n⩾01(n+1)(n+53)−19∑n⩾01(n+43)(n+53)=49.Ψ(53)−Ψ(1)53−1−19.Ψ(53)−Ψ(43)53−43S=23(Ψ(53)−Ψ(1))−13(Ψ(53)−Ψ(43))13(Ψ(53)+Ψ(43))−23Ψ(1)Ψ(pq)=−γ−ln(2q)−π2cot(pπq)+2∑[q−12]k=0cos(2pπkq)ln(sin(pkπq))Ψ(53)=32+Ψ(23),Ψ(43)=3+Ψ(13)Ψ(23)=−γ−ln(6)−π2cot(2π3)+2cos(4π3)ln(sin(2π3))=−γ−ln(6)+π23−ln(32)Ψ(13)=−γ−ln(6)−π23−ln(32)S=13(−2γ−ln(27)+32+3)−23(−γ)S=ln(13)+32=32−ln(3) Commented by M±th+et+s last updated on 13/Jun/20 welldoneprof.mathmindyouareintellignt Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-32420Next Next post: Question-32424 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.