Question Number 165329 by mnjuly1970 last updated on 30/Jan/22
$$ \\ $$$$\:\:\:\:{prove}\:\:\:\:\:\:\:\:\:\:\left(\:{n}\in\:\mathbb{N}\:\right) \\ $$$$\:\:\:\:\mathrm{3}\left({n}+\mathrm{1}\right)\:\mid\:{n}^{\:\mathrm{3}} \:+\:\left({n}+\mathrm{1}\right)^{\:\mathrm{3}} +\:\left({n}+\mathrm{2}\:\right)^{\:\mathrm{3}} \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 30/Jan/22
$$\underset{−} {\:\mathrm{3}\left({n}+\mathrm{1}\right)\:\mid\:{n}^{\:\mathrm{3}} +\:\left({n}+\mathrm{1}\right)^{\:\mathrm{3}} +\left({n}+\mathrm{2}\:\right)^{\:\mathrm{3}} } \\ $$$$\because\:\:{n}^{\:\mathrm{3}} +\:\left({n}+\mathrm{1}\right)^{\:\mathrm{3}} +\left({n}+\mathrm{2}\:\right)^{\:\mathrm{3}} \\ $$$$\:=\left({n}+\mathrm{1}−\mathrm{1}\right)^{\mathrm{3}} +\:\left({n}+\mathrm{1}\right)^{\:\mathrm{3}} +\left({n}+\mathrm{1}+\mathrm{1}\:\right)^{\:\mathrm{3}} \\ $$$$=\left({n}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{1}−\mathrm{3}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{1}−\mathrm{1}\right) \\ $$$$\:\:\:+\left({n}+\mathrm{1}\right)^{\mathrm{3}} \\ $$$$\:\:\:+\left({n}+\mathrm{1}\right)^{\mathrm{3}} +\mathrm{1}+\mathrm{3}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{1}+\mathrm{1}\right) \\ $$$$=\mathrm{3}\left({n}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{3}{n}\left({n}+\mathrm{1}\right)+\mathrm{3}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right) \\ $$$$=\mathrm{3}\left({n}+\mathrm{1}\right)\left\{\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{3}{n}+{n}+\mathrm{2}\right\} \\ $$$$\:\therefore\:\mathrm{3}\left({n}+\mathrm{1}\right)\:\mid\:{n}^{\:\mathrm{3}} +\:\left({n}+\mathrm{1}\right)^{\:\mathrm{3}} +\left({n}+\mathrm{2}\:\right)^{\:\mathrm{3}} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 30/Jan/22
$$\:\:{very}\:{nice}\:{solution}\:{sir}\:… \\ $$
Answered by Rasheed.Sindhi last updated on 31/Jan/22
$$\mathrm{AnOther}\:\mathrm{method} \\ $$$$\underset{−} {\:\mathrm{3}\left({n}+\mathrm{1}\right)\:\mid\:{n}^{\mathrm{3}} \:+\:\left({n}+\mathrm{1}\right)^{\mathrm{3}} +\:\left({n}+\mathrm{2}\:\right)^{\mathrm{3}} } \\ $$$$\because\:\:{n}^{\mathrm{3}} \:+\:\left({n}+\mathrm{1}\right)^{\mathrm{3}} +\:\left({n}+\mathrm{2}\:\right)^{\mathrm{3}} \\ $$$$={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} −\mathrm{3}{abc}+\mathrm{3}{abc}\:;\begin{cases}{{a}={n}}\\{{b}={n}+\mathrm{1}}\\{{c}={n}+\mathrm{2}}\end{cases} \\ $$$$=\left({a}+{b}+{c}\right)\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{ab}−{bc}−{ca}\right)+\mathrm{3}{abc} \\ $$$$=\left({n}+{n}+\mathrm{1}+{n}+\mathrm{2}\right)\left(\:\:\:\:\:\sim\:\:\:\right)+\mathrm{3}{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right) \\ $$$$=\mathrm{3}\left({n}+\mathrm{1}\right)\left(\:\sim\:\right)+\mathrm{3}{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right) \\ $$$$=\mathrm{3}\left({n}+\mathrm{1}\right)\left\{\left(\:\sim\:\right)+{n}\left({n}+\mathrm{2}\right)\right\} \\ $$$$ \\ $$$$\therefore\:\:\mathrm{3}\left({n}+\mathrm{1}\right)\:\mid\:{n}^{\mathrm{3}} +\:\left({n}+\mathrm{1}\right)^{\mathrm{3}} +\left({n}+\mathrm{2}\:\right)^{\mathrm{3}} \\ $$
Commented by mnjuly1970 last updated on 31/Jan/22
$$\:\:{thank}\:{you}\:{so}\:{much}\:{sir}\:\mathrm{R}{asheed} \\ $$