Menu Close

prove-n-N-3-n-1-n-3-n-1-3-n-2-3-




Question Number 165329 by mnjuly1970 last updated on 30/Jan/22
      prove          ( n∈ N )      3(n+1) ∣ n^( 3)  + (n+1)^( 3) + (n+2 )^( 3)
prove(nN)3(n+1)n3+(n+1)3+(n+2)3
Answered by Rasheed.Sindhi last updated on 30/Jan/22
 3(n+1) ∣ n^( 3) + (n+1)^( 3) +(n+2 )^( 3) _(−)   ∵  n^( 3) + (n+1)^( 3) +(n+2 )^( 3)    =(n+1−1)^3 + (n+1)^( 3) +(n+1+1 )^( 3)   =(n+1)^3 −1−3(n+1)(n+1−1)     +(n+1)^3      +(n+1)^3 +1+3(n+1)(n+1+1)  =3(n+1)^3 −3n(n+1)+3(n+1)(n+2)  =3(n+1){(n+1)^2 −3n+n+2}   ∴ 3(n+1) ∣ n^( 3) + (n+1)^( 3) +(n+2 )^( 3)
3(n+1)n3+(n+1)3+(n+2)3n3+(n+1)3+(n+2)3=(n+11)3+(n+1)3+(n+1+1)3=(n+1)313(n+1)(n+11)+(n+1)3+(n+1)3+1+3(n+1)(n+1+1)=3(n+1)33n(n+1)+3(n+1)(n+2)=3(n+1){(n+1)23n+n+2}3(n+1)n3+(n+1)3+(n+2)3
Commented by mnjuly1970 last updated on 30/Jan/22
  very nice solution sir ...
verynicesolutionsir
Answered by Rasheed.Sindhi last updated on 31/Jan/22
AnOther method   3(n+1) ∣ n^3  + (n+1)^3 + (n+2 )^3 _(−)   ∵  n^3  + (n+1)^3 + (n+2 )^3   =a^3 +b^3 +c^3 −3abc+3abc ; { ((a=n)),((b=n+1)),((c=n+2)) :}  =(a+b+c)(a^2 +b^2 +c^2 −ab−bc−ca)+3abc  =(n+n+1+n+2)(     ∼   )+3n(n+1)(n+2)  =3(n+1)( ∼ )+3n(n+1)(n+2)  =3(n+1){( ∼ )+n(n+2)}    ∴  3(n+1) ∣ n^3 + (n+1)^3 +(n+2 )^3
AnOthermethod3(n+1)n3+(n+1)3+(n+2)3n3+(n+1)3+(n+2)3=a3+b3+c33abc+3abc;{a=nb=n+1c=n+2=(a+b+c)(a2+b2+c2abbcca)+3abc=(n+n+1+n+2)()+3n(n+1)(n+2)=3(n+1)()+3n(n+1)(n+2)=3(n+1){()+n(n+2)}3(n+1)n3+(n+1)3+(n+2)3
Commented by mnjuly1970 last updated on 31/Jan/22
  thank you so much sir Rasheed
thankyousomuchsirRasheed

Leave a Reply

Your email address will not be published. Required fields are marked *