Question Number 21154 by youssoufab last updated on 14/Sep/17
$${prove}:\:\forall{n}\in\mathbb{N}^{\ast} ,\forall\left({a},{b}\right)\in\mathbb{C}^{\mathrm{2}} ,\:{a}^{\mathrm{2}{n}+\mathrm{1}} +{b}^{\mathrm{2}{n}+\mathrm{1}} = \\ $$$$\underset{{k}={o}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}−{k}} \\ $$
Commented by alex041103 last updated on 15/Sep/17
$${What}\:{does}\:\mathbb{C}^{\mathrm{2}} \:{mean}??\:{Sorry}\:{for}\:{the} \\ $$$${question}. \\ $$
Commented by sma3l2996 last updated on 15/Sep/17
$${that}'{s}\:{mean}\:{a}\in\mathbb{C}\:{and}\:{b}\in\mathbb{C} \\ $$
Answered by alex041103 last updated on 15/Sep/17
$${Let}'{s}\:{start}\:{with}\:{the}\:{expresion} \\ $$$$\left({a}+{b}\right)\left(\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}−{k}} \right)= \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}+\mathrm{1}} {b}^{\mathrm{2}{n}−{k}} +\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}+\mathrm{1}−{k}} = \\ $$$$=\left(−\mathrm{1}\right)^{\mathrm{2}{n}} {a}^{\mathrm{2}{n}+\mathrm{1}} {b}^{\mathrm{0}} +\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}+\mathrm{1}} {b}^{\mathrm{2}{n}−{k}} +\left(−\mathrm{1}\right)^{\mathrm{0}} {a}^{\mathrm{0}} {b}^{\mathrm{2}{n}+\mathrm{1}} +\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}+\mathrm{1}−{k}} = \\ $$$$={a}^{\mathrm{2}{n}+\mathrm{1}} +{b}^{\mathrm{2}{n}+\mathrm{1}} +\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} {a}^{{k}} {b}^{\mathrm{2}{n}+\mathrm{1}−{k}} +\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}+\mathrm{1}−{k}} \\ $$$${Because}\:\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} =\frac{\left(−\mathrm{1}\right)^{{k}} }{−\mathrm{1}}=−\left(−\mathrm{1}\right)^{{k}} \\ $$$$\Rightarrow\left({a}+{b}\right)\left(\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}−{k}} \right)= \\ $$$$={a}^{\mathrm{2}{n}+\mathrm{1}} +{b}^{\mathrm{2}{n}+\mathrm{1}} −\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}+\mathrm{1}−{k}} +\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}+\mathrm{1}−{k}} = \\ $$$$={a}^{\mathrm{2}{n}+\mathrm{1}} +{b}^{\mathrm{2}{n}+\mathrm{1}} \\ $$$$ \\ $$$${Note}:\:{The}\:{statement} \\ $$$${a}^{\mathrm{2}{n}+\mathrm{1}} +{b}^{\mathrm{2}{n}+\mathrm{1}} =\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}−{k}} \\ $$$${is}\:{False}. \\ $$$${The}\:{true}\:{statement}\:{is}\:{that} \\ $$$${a}^{\mathrm{2}{n}+\mathrm{1}} +{b}^{\mathrm{2}{n}+\mathrm{1}} =\left({a}+{b}\right)\left[\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}−{k}} \right] \\ $$$$ \\ $$
Commented by alex041103 last updated on 15/Sep/17
$${Note}:\:{The}\:{false}\:{statement} \\ $$$${a}^{\mathrm{2}{n}+\mathrm{1}} +{b}^{\mathrm{2}{n}+\mathrm{1}} =\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}−{k}} \\ $$$${is}\:{in}\:{fact}\:{allways}\:{true}\:{when}\:{a}+{b}=\mathrm{1} \\ $$$${or}\:\begin{cases}{{Re}\left({a}\right)+{Re}\left({b}\right)=\mathrm{1}}\\{{Im}\left({a}\right)=−{Im}\left({b}\right)}\end{cases} \\ $$$${And}\:{also}\:{when}\:{a}+{b}\neq\mathrm{0}\:{and}\: \\ $$$${a}^{\mathrm{2}{n}+\mathrm{1}} +{b}^{\mathrm{2}{n}+\mathrm{1}} =\mathrm{0}\:\left({both}\:{of}\:{those}\:{are}\:{true}\right. \\ $$$$\left.{for}\:{n}\neq\mathrm{0}\right) \\ $$
Commented by youssoufab last updated on 15/Sep/17
$$\mathrm{am}\:\mathrm{sorry}\:\mathrm{it}\:\mathrm{is}: \\ $$$${a}^{\mathrm{2}{n}+\mathrm{1}} +{b}^{\mathrm{2}{n}+\mathrm{1}} =\left({a}+{b}\right)\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}−{k}} \\ $$$${thanks}\:{flr}\:{help}\:! \\ $$