Menu Close

prove-n-N-a-b-C-2-a-2n-1-b-2n-1-k-o-2n-1-k-a-k-b-2n-k-




Question Number 21154 by youssoufab last updated on 14/Sep/17
prove: ∀n∈N^∗ ,∀(a,b)∈C^2 , a^(2n+1) +b^(2n+1) =  Σ_(k=o) ^(2n) (−1)^k a^k b^(2n−k)
prove:nN,(a,b)C2,a2n+1+b2n+1=2nk=o(1)kakb2nk
Commented by alex041103 last updated on 15/Sep/17
What does C^2  mean?? Sorry for the  question.
WhatdoesC2mean??Sorryforthequestion.
Commented by sma3l2996 last updated on 15/Sep/17
that′s mean a∈C and b∈C
thatsmeanaCandbC
Answered by alex041103 last updated on 15/Sep/17
Let′s start with the expresion  (a+b)(Σ_(k=0) ^(2n) (−1)^k a^k b^(2n−k) )=  =Σ_(k=0) ^(2n) (−1)^k a^(k+1) b^(2n−k) +Σ_(k=0) ^(2n) (−1)^k a^k b^(2n+1−k) =  =(−1)^(2n) a^(2n+1) b^0 +Σ_(k=0) ^(2n−1) (−1)^k a^(k+1) b^(2n−k) +(−1)^0 a^0 b^(2n+1) +Σ_(k=1) ^(2n) (−1)^k a^k b^(2n+1−k) =  =a^(2n+1) +b^(2n+1) +Σ_(k=1) ^(2n) (−1)^(k−1) a^k b^(2n+1−k) +Σ_(k=1) ^(2n) (−1)^k a^k b^(2n+1−k)   Because (−1)^(k−1) =(((−1)^k )/(−1))=−(−1)^k   ⇒(a+b)(Σ_(k=0) ^(2n) (−1)^k a^k b^(2n−k) )=  =a^(2n+1) +b^(2n+1) −Σ_(k=1) ^(2n) (−1)^k a^k b^(2n+1−k) +Σ_(k=1) ^(2n) (−1)^k a^k b^(2n+1−k) =  =a^(2n+1) +b^(2n+1)     Note: The statement  a^(2n+1) +b^(2n+1) =Σ_(k=0) ^(2n) (−1)^k a^k b^(2n−k)   is False.  The true statement is that  a^(2n+1) +b^(2n+1) =(a+b)[Σ_(k=0) ^(2n) (−1)^k a^k b^(2n−k) ]
Letsstartwiththeexpresion(a+b)(2nk=0(1)kakb2nk)==2nk=0(1)kak+1b2nk+2nk=0(1)kakb2n+1k==(1)2na2n+1b0+2n1k=0(1)kak+1b2nk+(1)0a0b2n+1+2nk=1(1)kakb2n+1k==a2n+1+b2n+1+2nk=1(1)k1akb2n+1k+2nk=1(1)kakb2n+1kBecause(1)k1=(1)k1=(1)k(a+b)(2nk=0(1)kakb2nk)==a2n+1+b2n+12nk=1(1)kakb2n+1k+2nk=1(1)kakb2n+1k==a2n+1+b2n+1Note:Thestatementa2n+1+b2n+1=2nk=0(1)kakb2nkisFalse.Thetruestatementisthata2n+1+b2n+1=(a+b)[2nk=0(1)kakb2nk]
Commented by alex041103 last updated on 15/Sep/17
Note: The false statement  a^(2n+1) +b^(2n+1) =Σ_(k=0) ^(2n) (−1)^k a^k b^(2n−k)   is in fact allways true when a+b=1  or  { ((Re(a)+Re(b)=1)),((Im(a)=−Im(b))) :}  And also when a+b≠0 and   a^(2n+1) +b^(2n+1) =0 (both of those are true  for n≠0)
Note:Thefalsestatementa2n+1+b2n+1=2nk=0(1)kakb2nkisinfactallwaystruewhena+b=1or{Re(a)+Re(b)=1Im(a)=Im(b)Andalsowhena+b0anda2n+1+b2n+1=0(bothofthosearetrueforn0)
Commented by youssoufab last updated on 15/Sep/17
am sorry it is:  a^(2n+1) +b^(2n+1) =(a+b)Σ_(k=0) ^(2n) (−1)^k a^k b^(2n−k)   thanks flr help !
amsorryitis:a2n+1+b2n+1=(a+b)2nk=0(1)kakb2nkthanksflrhelp!

Leave a Reply

Your email address will not be published. Required fields are marked *