Question Number 21154 by youssoufab last updated on 14/Sep/17

Commented by alex041103 last updated on 15/Sep/17

Commented by sma3l2996 last updated on 15/Sep/17

Answered by alex041103 last updated on 15/Sep/17
![Let′s start with the expresion (a+b)(Σ_(k=0) ^(2n) (−1)^k a^k b^(2n−k) )= =Σ_(k=0) ^(2n) (−1)^k a^(k+1) b^(2n−k) +Σ_(k=0) ^(2n) (−1)^k a^k b^(2n+1−k) = =(−1)^(2n) a^(2n+1) b^0 +Σ_(k=0) ^(2n−1) (−1)^k a^(k+1) b^(2n−k) +(−1)^0 a^0 b^(2n+1) +Σ_(k=1) ^(2n) (−1)^k a^k b^(2n+1−k) = =a^(2n+1) +b^(2n+1) +Σ_(k=1) ^(2n) (−1)^(k−1) a^k b^(2n+1−k) +Σ_(k=1) ^(2n) (−1)^k a^k b^(2n+1−k) Because (−1)^(k−1) =(((−1)^k )/(−1))=−(−1)^k ⇒(a+b)(Σ_(k=0) ^(2n) (−1)^k a^k b^(2n−k) )= =a^(2n+1) +b^(2n+1) −Σ_(k=1) ^(2n) (−1)^k a^k b^(2n+1−k) +Σ_(k=1) ^(2n) (−1)^k a^k b^(2n+1−k) = =a^(2n+1) +b^(2n+1) Note: The statement a^(2n+1) +b^(2n+1) =Σ_(k=0) ^(2n) (−1)^k a^k b^(2n−k) is False. The true statement is that a^(2n+1) +b^(2n+1) =(a+b)[Σ_(k=0) ^(2n) (−1)^k a^k b^(2n−k) ]](https://www.tinkutara.com/question/Q21175.png)
Commented by alex041103 last updated on 15/Sep/17

Commented by youssoufab last updated on 15/Sep/17
