Menu Close

Prove-or-disprove-that-2-101-n-n-101-




Question Number 65214 by naka3546 last updated on 26/Jul/19
Prove  or  disprove   that   2^(101)  ∣ n^n  − 101 .
Proveordisprovethat2101nn101.
Commented by naka3546 last updated on 26/Jul/19
n  positive  integer
npositiveinteger
Commented by Rasheed.Sindhi last updated on 27/Jul/19
For n=1, n^n −101=1^1 −101=−100  And 2^(101) ∤ −100.
Forn=1,nn101=11101=100And2101100.
Commented by naka3546 last updated on 27/Jul/19
any  n  that  satisfy  on ?
anynthatsatisfyon?
Answered by MJS last updated on 27/Jul/19
n^n −101≥2^(101)  ⇒ n≥2^(101) +101=2 535 301 200 456 458 802 993 406 410 853    n^n −101=m×2^(101)   n^n −101=2m×2^(100)   n^n −101=2l  n^n =2l+101  n^n =2(l+50)+1  n^n =2k+1 ⇒ it′s not true for even n    2^(101) −101=7^2 ×263 201×196 582 994 842 884 397 808 597=  =p^2 qr  n^n =m×p^2 qr  m=(n^n /(p^2 qr))=(((p^α q^β r^γ )^((p^α q^β r^γ )) )/(p^2 qr))=  =p^(αp^α q^β r^γ −2) q^(βp^α q^β r^γ −1) r^(γp^α q^β r^γ −1)   the smallest number m is the one with  α=β=γ=1  m_(min) =p^(pqr−2) q^(pqr−1) r^(pqr−1) ≈10^((10^(31) ))
nn1012101n2101+101=2535301200456458802993406410853nn101=m×2101nn101=2m×2100nn101=2lnn=2l+101nn=2(l+50)+1nn=2k+1itsnottrueforevenn2101101=72×263201×196582994842884397808597==p2qrnn=m×p2qrm=nnp2qr=(pαqβrγ)(pαqβrγ)p2qr==pαpαqβrγ2qβpαqβrγ1rγpαqβrγ1thesmallestnumbermistheonewithα=β=γ=1mmin=ppqr2qpqr1rpqr110(1031)

Leave a Reply

Your email address will not be published. Required fields are marked *