Menu Close

Prove-or-disprove-that-there-is-a-positive-integer-suitable-for-n-3-1-n-n-is-divided-by-n-3-1-n-Z-




Question Number 60808 by naka3546 last updated on 26/May/19
Prove  or  disprove  that  there  is  a  positive  integer  suitable  for         n^3  + 1   ∣   n!                  (  n!   is  divided  by  n^3  + 1  )  n  ∈  Z^+
Proveordisprovethatthereisapositiveintegersuitableforn3+1n!(n!isdividedbyn3+1)nZ+
Commented by mr W last updated on 26/May/19
the first one is n=17:  n!=355687248096000  n^3 +1=4914  n! mod (n^3 +1)=0
thefirstoneisn=17:n!=355687248096000n3+1=4914n!mod(n3+1)=0
Commented by mr W last updated on 26/May/19
i found the next one: n=31  n!=8222838654177922817725562880000000  n^3 +1=29792  n! mod (n^3 +1)=0
ifoundthenextone:n=31n!=8222838654177922817725562880000000n3+1=29792n!mod(n3+1)=0
Commented by mr W last updated on 26/May/19
the next one is n=32
thenextoneisn=32
Commented by naka3546 last updated on 26/May/19
how  to  get  them,  sir?
howtogetthem,sir?
Commented by mr W last updated on 26/May/19
there is no intelligent way but trying  one after one.
thereisnointelligentwaybuttryingoneafterone.
Commented by MJS last updated on 27/May/19
n=32 is wrong  I get  n=0  n=17  n=31  n=50  n=68  n=69  n=75  n=80  n=101  n=103  n=122  n=147  n=155  n=159  n=160  n=164  n=170  n=173  n=179  n=182  for 0≤n≤200  ...the next one is 212
n=32iswrongIgetn=0n=17n=31n=50n=68n=69n=75n=80n=101n=103n=122n=147n=155n=159n=160n=164n=170n=173n=179n=182for0n200thenextoneis212
Commented by MJS last updated on 27/May/19
btw  (n^3 +1)∣n! ⇔ (n^3 −1)∣(n−1)!
btw(n3+1)n!(n31)(n1)!
Commented by mr W last updated on 28/May/19
thanks sir!  you are right, 32 is wrong.
thankssir!youareright,32iswrong.
Answered by Rasheed.Sindhi last updated on 28/May/19
Trying to make search narrower         n^3  + 1   ∣   n!             (n+1)(n^2 −n+1)   ∣   n!      n+1 ∣ n!   ∧  n^2 −n+1 ∣  n!  [ ab ∣ c ⇒a∣c & b∣c ]      •  n+1  ∣  n! ⇒ n+1 ∉  P       [ Any prime>n can′t divide n! ]  n≠2−1,3−1,5−1,.......  n≠1,2,4,6,10,12,16,18,......  n may be 3,5,7,8,9,11,13,14,15,17     •  n^2 −n+1 ∣  n!        c1:n^2 −n+1<n              n^2 −2n+1<0              (n−1)^2 <0     Impossible       c2: n^2 −n+1=n             n=1  doesn′t satisfy n^3 +1 ∣ n!       c3: n^2 −n+1>n               (n−1)^2 >0    the only considerable case       n^2 −n+1>n  ∧  n^2 −n+1 ∣ n!        ⇒  n^2 −n+1 ∉ P   So n+1 &  n^2 −n+1 both are not prime  Hence such values of n for which these  two expressions are prime value must  be excluded from considering.  (Sample)   determinant ((n,(n+1),(n^2 −n+1),(rem)),(1,(   2^∗ ),(         1),(   ×)),(2,(   3^∗ ),(         3^∗ ),(   ×)),(3,(   4),(         7^∗ ),(   ×)),(4,(   5^∗ ),(        13^∗ ),(   ×)),(5,(   6),(        21),(   −)),(6,(   7^∗ ),(        31^∗ ),(   ×)),(7,(   8),(        43^∗ ),(   ×)),(8,(    9),(       57),(   −)),(9,(   10),(      73^∗ ),(   ×)),((10),(   11^∗ ),(      91),(   ×)),((11),(   12),(     121),(   −)),((12),(   13^∗ ),(     133),(    ×)))  × means excluded  − means considerable  numbers starred are prime.
Tryingtomakesearchnarrowern3+1n!(n+1)(n2n+1)n!n+1n!n2n+1n![abcac&bc]n+1n!n+1P[Anyprime>ncantdividen!]n21,31,51,.n1,2,4,6,10,12,16,18,nmaybe3,5,7,8,9,11,13,14,15,17n2n+1n!c1:n2n+1<nn22n+1<0(n1)2<0Impossiblec2:n2n+1=nn=1doesntsatisfyn3+1n!c3:n2n+1>n(n1)2>0theonlyconsiderablecasen2n+1>nn2n+1n!n2n+1PSon+1&n2n+1botharenotprimeHencesuchvaluesofnforwhichthesetwoexpressionsareprimevaluemustbeexcludedfromconsidering.(Sample)|nn+1n2n+1rem121×233×347×4513×56216731×7843×895791073×101191×11121211213133×|×meansexcludedmeansconsiderablenumbersstarredareprime.
Commented by Rasheed.Sindhi last updated on 28/May/19
CONCLUSION:  TRY only those values for n,  for which n & n(n−1) are not  of  p−1 type. (p is prime)
CONCLUSION:TRYonlythosevaluesforn,forwhichn&n(n1)arenotofp1type.(pisprime)
Commented by mr W last updated on 29/May/19
thanks alot sir!
thanksalotsir!

Leave a Reply

Your email address will not be published. Required fields are marked *