Menu Close

prove-or-disprove-with-counter-example-that-a-For-all-two-dimensional-vectors-a-b-c-a-b-a-c-b-c-b-For-all-positive-real-numbers-a-b-a-b-2-ab-




Question Number 83965 by Rio Michael last updated on 08/Mar/20
prove or disprove(with counter−example) that  a) For all two dimensional vectors a,b,c,          a.b = a. c ⇒ b=c.  b) For all positive real numbers a,b.            ((a +b)/2) ≥ (√(ab))
proveordisprove(withcounterexample)thata)Foralltwodimensionalvectorsa,b,c,a.b=a.cb=c.b)Forallpositiverealnumbersa,b.a+b2ab
Commented by mr W last updated on 08/Mar/20
(a)  statement is wrong!  a∙b=∣a∣∣b∣cos β  a∙c=∣a∣∣c∣cos γ  a∙b=a∙c ⇒∣b∣ cos β=∣c∣ cos γ ⇏ b=c  example  a=(1,0)  b=(1,1)  c=(1,2)  a∙b=a∙c=1  but b≠c
(a)statementiswrong!ab=∣a∣∣bcosβac=∣a∣∣ccosγab=ac⇒∣bcosβ=∣ccosγb=cexamplea=(1,0)b=(1,1)c=(1,2)ab=ac=1butbc
Commented by mr W last updated on 08/Mar/20
(b)  for a,b>0:  ((√a)−(√b))^2 ≥0  ⇒a−2(√(ab))+b≥0  ⇒((a+b)/2)≥(√(ab))
(b)fora,b>0:(ab)20a2ab+b0a+b2ab
Commented by Rio Michael last updated on 08/Mar/20
perfect sir, and thanks for the correction
perfectsir,andthanksforthecorrection

Leave a Reply

Your email address will not be published. Required fields are marked *