Menu Close

prove-or-disprove-with-counter-example-that-a-For-all-two-dimensional-vectors-a-b-c-a-b-a-c-b-c-b-For-all-positive-real-numbers-a-b-a-b-2-ab-




Question Number 83965 by Rio Michael last updated on 08/Mar/20
prove or disprove(with counter−example) that  a) For all two dimensional vectors a,b,c,          a.b = a. c ⇒ b=c.  b) For all positive real numbers a,b.            ((a +b)/2) ≥ (√(ab))
$$\mathrm{prove}\:\mathrm{or}\:\mathrm{disprove}\left(\mathrm{with}\:\mathrm{counter}−\mathrm{example}\right)\:\mathrm{that} \\ $$$$\left.\mathrm{a}\right)\:\mathrm{For}\:\mathrm{all}\:\mathrm{two}\:\mathrm{dimensional}\:\mathrm{vectors}\:\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}},\boldsymbol{\mathrm{c}}, \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{a}}.\boldsymbol{\mathrm{b}}\:=\:\boldsymbol{\mathrm{a}}.\:\boldsymbol{\mathrm{c}}\:\Rightarrow\:\boldsymbol{\mathrm{b}}=\boldsymbol{\mathrm{c}}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{For}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers}\:{a},{b}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\frac{{a}\:+{b}}{\mathrm{2}}\:\geqslant\:\sqrt{{ab}}\: \\ $$
Commented by mr W last updated on 08/Mar/20
(a)  statement is wrong!  a∙b=∣a∣∣b∣cos β  a∙c=∣a∣∣c∣cos γ  a∙b=a∙c ⇒∣b∣ cos β=∣c∣ cos γ ⇏ b=c  example  a=(1,0)  b=(1,1)  c=(1,2)  a∙b=a∙c=1  but b≠c
$$\left({a}\right) \\ $$$${statement}\:{is}\:{wrong}! \\ $$$$\boldsymbol{{a}}\centerdot\boldsymbol{{b}}=\mid{a}\mid\mid{b}\mid\mathrm{cos}\:\beta \\ $$$$\boldsymbol{{a}}\centerdot\boldsymbol{{c}}=\mid{a}\mid\mid{c}\mid\mathrm{cos}\:\gamma \\ $$$$\boldsymbol{{a}}\centerdot\boldsymbol{{b}}=\boldsymbol{{a}}\centerdot\boldsymbol{{c}}\:\Rightarrow\mid{b}\mid\:\mathrm{cos}\:\beta=\mid{c}\mid\:\mathrm{cos}\:\gamma\:\nRightarrow\:\boldsymbol{{b}}=\boldsymbol{{c}} \\ $$$${example} \\ $$$${a}=\left(\mathrm{1},\mathrm{0}\right) \\ $$$${b}=\left(\mathrm{1},\mathrm{1}\right) \\ $$$${c}=\left(\mathrm{1},\mathrm{2}\right) \\ $$$${a}\centerdot{b}={a}\centerdot{c}=\mathrm{1} \\ $$$${but}\:{b}\neq{c} \\ $$
Commented by mr W last updated on 08/Mar/20
(b)  for a,b>0:  ((√a)−(√b))^2 ≥0  ⇒a−2(√(ab))+b≥0  ⇒((a+b)/2)≥(√(ab))
$$\left({b}\right) \\ $$$${for}\:{a},{b}>\mathrm{0}: \\ $$$$\left(\sqrt{{a}}−\sqrt{{b}}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\Rightarrow{a}−\mathrm{2}\sqrt{{ab}}+{b}\geqslant\mathrm{0} \\ $$$$\Rightarrow\frac{{a}+{b}}{\mathrm{2}}\geqslant\sqrt{{ab}} \\ $$
Commented by Rio Michael last updated on 08/Mar/20
perfect sir, and thanks for the correction
$${perfect}\:{sir},\:{and}\:{thanks}\:{for}\:{the}\:{correction} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *