Menu Close

prove-Re-0-1-Li-2-1-x-dx-2-m-n-




Question Number 164129 by mnjuly1970 last updated on 14/Jan/22
     prove         𝛗= Re (∫_0 ^( 1)  Li_( 2)  ( (1/x) ) )dx = ΞΆ (2)        βˆ’βˆ’βˆ’m.nβˆ’βˆ’βˆ’
$$ \\ $$$$\:\:\:{prove} \\ $$$$ \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\:\mathscr{R}{e}\:\left(\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{Li}_{\:\mathrm{2}} \:\left(\:\frac{\mathrm{1}}{{x}}\:\right)\:\right){dx}\:=\:\zeta\:\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:βˆ’βˆ’βˆ’{m}.{n}βˆ’βˆ’βˆ’ \\ $$
Answered by mindispower last updated on 14/Jan/22
∫Li_2 ((1/x))  =xLi_2 ((1/x))βˆ’βˆ«_0 ^1 ln(1βˆ’(1/x))dx  βˆ€x∈]0,1[ ln(1βˆ’(1/x))=ln((1/x)βˆ’1)+iΟ€  βˆ…=[xli_2 ((1/x))]_0 ^1 βˆ’βˆ«_0 ^1 ln((1/x)βˆ’1)dx  =li_2 (1)βˆ’βˆ«_1 ^∞ ((ln(xβˆ’1))/x^2 )dx=ΞΆ(2)βˆ’A  A=∫_0 ^∞ ((ln(z))/((1+z)^2 ))dz=∫_0 ^∞ βˆ’((ln(z))/((1+z)^2 ))dz=βˆ’Aβ‡’A=0  βˆ…=Li_2 (1)=ΞΆ(2)
$$\int{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$={xLi}_{\mathrm{2}} \left(\frac{\mathrm{1}}{{x}}\right)βˆ’\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}βˆ’\frac{\mathrm{1}}{{x}}\right){dx} \\ $$$$\left.\forall{x}\in\right]\mathrm{0},\mathrm{1}\left[\:{ln}\left(\mathrm{1}βˆ’\frac{\mathrm{1}}{{x}}\right)={ln}\left(\frac{\mathrm{1}}{{x}}βˆ’\mathrm{1}\right)+{i}\pi\right. \\ $$$$\emptyset=\left[{xli}_{\mathrm{2}} \left(\frac{\mathrm{1}}{{x}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} βˆ’\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\frac{\mathrm{1}}{{x}}βˆ’\mathrm{1}\right){dx} \\ $$$$={li}_{\mathrm{2}} \left(\mathrm{1}\right)βˆ’\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left({x}βˆ’\mathrm{1}\right)}{{x}^{\mathrm{2}} }{dx}=\zeta\left(\mathrm{2}\right)βˆ’{A} \\ $$$${A}=\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({z}\right)}{\left(\mathrm{1}+{z}\right)^{\mathrm{2}} }{dz}=\int_{\mathrm{0}} ^{\infty} βˆ’\frac{{ln}\left({z}\right)}{\left(\mathrm{1}+{z}\right)^{\mathrm{2}} }{dz}=βˆ’{A}\Rightarrow{A}=\mathrm{0} \\ $$$$\emptyset={Li}_{\mathrm{2}} \left(\mathrm{1}\right)=\zeta\left(\mathrm{2}\right) \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 15/Jan/22
  thanks alot sir power...very nice  solution..grateful
$$\:\:{thanks}\:{alot}\:{sir}\:{power}…{very}\:{nice} \\ $$$${solution}..{grateful} \\ $$
Commented by mindispower last updated on 15/Jan/22
withe Pleasur thanks  have a nice day sir
$${withe}\:{Pleasur}\:{thanks} \\ $$$${have}\:{a}\:{nice}\:{day}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *