prove-S-n-1-1-1-3-2pi-3-27- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 152345 by mnjuly1970 last updated on 27/Aug/21 prove…S=∑∞n=11=13+2π327… Answered by Kamel last updated on 27/Aug/21 prove…S=∑∞n=11=13+2π327…=∑+∞n=1nΓ(n+1)Γ(n)Γ(2n+1)=∑+∞n=1n∫01tn−1(1−t)ndt=∫01ddy[∑+∞n=1yn(1−t)n]y=tdt=∫011−t(1−t(1−t))2dt=∫01u(u2−u+1)2du=∫1+∞u(u2−u+1)2duS=12∫0+∞udu(u2−u+1)2=12dda[∫0+∞du(u2−au+1)]a=1=12dda[11−a24(π2+Arctan(a21−a24))]a=1=12[233(π2+Arctan(13))−123(−13−34)]=2π93+13=13+2π327 Commented by mnjuly1970 last updated on 28/Aug/21 verhnicesirkamel..tashakor Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: we-know-the-equation-of-a-simple-harmonic-wave-going-to-left-to-right-is-y-asin-2pi-vt-x-if-we-put-t-0-and-x-0-we-get-y-0-and-if-we-put-t-0-and-x-0-25-we-get-y-a-But-How-could-thiNext Next post: Question-21276 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.