Question Number 81760 by jagoll last updated on 15/Feb/20
$${prove}\: \\ $$$$\mathrm{sin}\:{a}+\mathrm{sin}\:{b}+\mathrm{sin}\:{c}\:=? \\ $$$$\mathrm{4cos}\:\left(\frac{{a}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{b}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{c}}{\mathrm{2}}\right) \\ $$
Commented by jagoll last updated on 15/Feb/20
$${thank}\:{you} \\ $$
Commented by john santu last updated on 15/Feb/20
$$\Rightarrow\mathrm{sin}\:{a}+\mathrm{sin}\:{b}+\mathrm{sin}\:{c}\:= \\ $$$$\mathrm{2sin}\:\left(\frac{{a}+{b}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{a}−{b}}{\mathrm{2}}\right)+\mathrm{2sin}\:\left(\frac{{c}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{c}}{\mathrm{2}}\right)\:= \\ $$$$\mathrm{2sin}\:\left(\frac{{a}+{b}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{a}−{b}}{\mathrm{2}}\right)+\mathrm{2sin}\:\left(\mathrm{90}^{{o}} −\frac{\left({a}+{b}\right)}{\mathrm{2}}\right)\mathrm{cos}\:\left(\mathrm{90}^{{o}} −\frac{\left({a}+{b}\right)}{\mathrm{2}}\right)\:= \\ $$$$\mathrm{2sin}\:\left(\frac{{a}+{b}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{a}−{b}}{\mathrm{2}}\right)+\mathrm{2cos}\:\left(\frac{{a}+{b}}{\mathrm{2}}\right)\mathrm{sin}\:\left(\frac{{a}+{b}}{\mathrm{2}}\right)\:= \\ $$$$\mathrm{2sin}\:\left(\frac{{a}+{b}}{\mathrm{2}}\right)\:\left\{\mathrm{cos}\:\left(\frac{{a}−{b}}{\mathrm{2}}\right)+\mathrm{cos}\:\left(\frac{{a}+{b}}{\mathrm{2}}\right)\right\}= \\ $$$$\mathrm{2sin}\:\left(\frac{{a}+{b}}{\mathrm{2}}\right)×\mathrm{2cos}\:\left(\frac{{a}}{\mathrm{2}}\right)\mathrm{cos}\:\left(−\frac{{b}}{\mathrm{2}}\right)\:= \\ $$$$\mathrm{2sin}\:\left(\mathrm{90}^{{o}} −\left(\frac{{c}}{\mathrm{2}}\right)\right)×\mathrm{2cos}\:\left(\frac{{a}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{b}}{\mathrm{2}}\right)\:= \\ $$$$\mathrm{4}\:\mathrm{cos}\:\left(\frac{{a}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{b}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{c}}{\mathrm{2}}\right)\: \\ $$