Menu Close

Prove-sin5-16sin-5-20sin-3-5sin-Hence-show-that-sin-6-is-an-irrational-number-




Question Number 106726 by ZiYangLee last updated on 06/Aug/20
Prove sin5θ=16sin^5 θ−20sin^3 θ+5sinθ  Hence, show that sin 6° is an  irrational number.
Provesin5θ=16sin5θ20sin3θ+5sinθHence,showthatsin6°isanirrationalnumber.
Answered by Ar Brandon last updated on 06/Aug/20
sin5θ=Im(cos5θ+isin5θ)=Im(cosθ+isinθ)^5               =Im(C^5 +5iC^4 S−10C^3 S^2 −10iC^2 S^3 +5CS^4 +iS^5 )              =5C^4 S−10C^2 S^3 +S^5 =5(1−S^2 )^2 S−10(1−S^2 )S^3 +S^5               =5(1−2S^2 +S^4 )S−10(S^3 −S^5 )+S^5               =16S^5 −20S^3 +5S  ⇒sin5θ=16sin^5 θ−20sin^3 θ+5sinθ
sin5θ=Im(cos5θ+isin5θ)=Im(cosθ+isinθ)5=Im(C5+5iC4S10C3S210iC2S3+5CS4+iS5)=5C4S10C2S3+S5=5(1S2)2S10(1S2)S3+S5=5(12S2+S4)S10(S3S5)+S5=16S520S3+5Ssin5θ=16sin5θ20sin3θ+5sinθ

Leave a Reply

Your email address will not be published. Required fields are marked *