Menu Close

prove-that-0-1-1-1-t-a-2-dt-n-0-1-n-2-n-na-1-2-find-the-value-of-n-0-1-n-2-n-3n-1-




Question Number 38118 by maxmathsup by imad last updated on 21/Jun/18
prove that  ∫_0 ^1       (1/(1+(t^a /2)))dt =Σ_(n=0) ^∞    (((−1)^n )/(2^n (na+1)))  2) find the value of Σ_(n=0) ^∞     (((−1)^n )/(2^n (3n+1)))
provethat0111+ta2dt=n=0(1)n2n(na+1)2)findthevalueofn=0(1)n2n(3n+1)
Commented by abdo mathsup 649 cc last updated on 05/Jul/18
we have ∣(t^a /2)∣<1 ⇒∫_0 ^1      (1/(1+(t^a /2)))dt  =∫_0 ^1  (Σ_(n=0) ^∞ (−1)^n  (t^(na) /2^n ))dt  =Σ_(n=0) ^∞  (((−1)^n )/2^n ) ∫_0 ^1   t^(na) dt  =Σ_(n=0) ^∞   (((−1)^n )/2^n ) (1/(na +1))  2)we have Σ_(n=0) ^∞    (((−1)^n )/(2^n (3n+1))) =∫_0 ^1    (dt/(1+(t^3 /2)))  =2 ∫_0 ^1    (dt/(2+t^3 ))    let  α/ α^3  =2 ⇒α=^3 (√2)  ∫_0 ^1    (dt/(t^3 +2)) =∫_0 ^1   (dt/(t^3  +α^3 )) let ddcompose  F(t) = (1/(t^3  +α^3 ))  F(t) = (1/((t+α)(t^2  −αt +α^2 ))) =(a/(t+α))  +((bt +c)/(t^2 −αt +α^2 ))  ...be continued...
wehaveta2∣<10111+ta2dt=01(n=0(1)ntna2n)dt=n=0(1)n2n01tnadt=n=0(1)n2n1na+12)wehaven=0(1)n2n(3n+1)=01dt1+t32=201dt2+t3letα/α3=2α=3201dtt3+2=01dtt3+α3letddcomposeF(t)=1t3+α3F(t)=1(t+α)(t2αt+α2)=at+α+bt+ct2αt+α2becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *