prove-that-0-1-1-1-t-n-t-dt-k-1-n-1-k- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 40889 by abdo.msup.com last updated on 28/Jul/18 prove?that∫011−(1−t)ntdt=∑k=1n1k Answered by math khazana by abdo last updated on 30/Jul/18 wehave1−xn=(1−x)(1+x+x2+…+xn−1)⇒1−(1−t)nt=t(1+(1−t)+(1−t)2+…+(1−t)n−1t∫011−(1−t)tdt=∫01∑k=0n−1(1−t)kdt=∑k=0n−1∫01(1−t)kdt=∑k=0n[−1k+1(1−t)k+1]01=∑k=0n−11k+1=∑k=1n1k(=Hn). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-0-pi-pi-sint-t-n-dt-pi-sin-n-n-integr-natural-Next Next post: 1-calculate-1-n-1-1-n-1-t-1-t-dt-2-prove-that-0-1-1-t-1-t-dt-1-is-constant-number-of-euler- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.