Question Number 40889 by abdo.msup.com last updated on 28/Jul/18
$${prove}?{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$
Answered by math khazana by abdo last updated on 30/Jul/18
$${we}\:{have}\:\mathrm{1}−{x}^{{n}} =\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+…+{x}^{{n}−\mathrm{1}} \right)\Rightarrow \\ $$$$\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}\:=\frac{{t}\left(\mathrm{1}+\left(\mathrm{1}−{t}\right)+\left(\mathrm{1}−{t}\right)^{\mathrm{2}} +…+\left(\mathrm{1}−{t}\right)^{{n}−\mathrm{1}} \right.}{{t}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)}{{t}}{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{k}} {dt} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{k}} {dt}\:=\sum_{{k}=\mathrm{0}} ^{{n}} \left[−\frac{\mathrm{1}}{{k}+\mathrm{1}}\left(\mathrm{1}−{t}\right)^{{k}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{{k}+\mathrm{1}}\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:\:\left(={H}_{{n}} \right). \\ $$