Menu Close

prove-that-0-1-1-x-2-1-x-2-dx-4-pi-G-where-G-catalan-constant-




Question Number 110118 by mathdave last updated on 27/Aug/20
prove that  ∫_0 ^1 Γ(1−(x/2))Γ(1+(x/2))dx=(4/π)G  where G(catalan constant)
provethat01Γ(1x2)Γ(1+x2)dx=4πGwhereG(catalanconstant)
Commented by Sarah85 last updated on 27/Aug/20
  please show how to get  ∫_0 ^π sin (a sin (x)) dx=πH_0  (a)  where H_0  (a) is the Struve−H−Function
pleaseshowhowtogetπ0sin(asin(x))dx=πH0(a)whereH0(a)istheStruveHFunction
Commented by maths mind last updated on 30/Aug/20
  H_t (a)=Σ_(m≥0) (((−1)^m )/(Γ(m+(3/2))Γ(m+t+(3/2))))((z/2))^(2m+t+1)   sin(asin(x))=Σ_(k≥0) (−1)^k (((asin(x))^((2k+1)) )/((2k+1)!))  ∫_0 ^π sin^m (x)dx=∫_0 ^(π/2) {sin^m (x)+cos^m (x)}dx  =2∫_0 ^(π/2) sin^m (x)dx=β(((m+1)/2),(1/2))=((Γ(((m+1)/2))Γ((1/2)))/(Γ((m/2)+1)))  =Σ_(k≥0) (((−1)^k Γ(k+1)Γ((1/2)))/(Γ(2k+2).Γ(k+(3/2))))a^(2k+1)   Γ(2k+2)=Π_(j=1) ^k (2j).Π_(j=0) ^k (2j+1)  =2^k Γ(k+1).2^(k+1) Γ((k/2)+(3/2))=2^(2k+1) Γ(k+1)Γ(((k+3)/2))  =Σ_(k≥0) (((−1)^k Γ(k+1)Γ((1/2)))/(2^(2k+1) Γ(k+1)Γ(((k+3)/2)).Γ(((k+3)/2))))a^(2k+1)   =Γ((1/2))Σ_(k≥0) (((−1)^k )/(Γ((k/2)+0+(3/2))Γ((k/2)+(3/2)))).((a/2))^(2k+1+0) _(=H_0 (a))   =(√π).H_0 (a)
Ht(a)=m0(1)mΓ(m+32)Γ(m+t+32)(z2)2m+t+1sin(asin(x))=k0(1)k(asin(x))(2k+1)(2k+1)!0πsinm(x)dx=0π2{sinm(x)+cosm(x)}dx=20π2sinm(x)dx=β(m+12,12)=Γ(m+12)Γ(12)Γ(m2+1)=k0(1)kΓ(k+1)Γ(12)Γ(2k+2).Γ(k+32)a2k+1Γ(2k+2)=kj=1(2j).kj=0(2j+1)=2kΓ(k+1).2k+1Γ(k2+32)=22k+1Γ(k+1)Γ(k+32)=k0(1)kΓ(k+1)Γ(12)22k+1Γ(k+1)Γ(k+32).Γ(k+32)a2k+1Missing \left or extra \right=π.H0(a)
Commented by Sarah85 last updated on 30/Aug/20
thank you very much!
thankyouverymuch!
Commented by maths mind last updated on 30/Aug/20
withe pleasur
withepleasur
Answered by maths mind last updated on 15/Sep/20
Γ(1+(x/2))=(x/2)Γ((x/2))  ⇔∫_0 ^1 Γ(1−(x/2))Γ((x/2)).(x/2)dx  =(1/2)∫_0 ^1 Γ(1−(x/2))Γ((x/2))xdx  Γ(1−x)Γ(x)=(π/(sin(πx))),x∈]0,1[  we find  (1/2)∫_0 ^1 π(x/(2sin(((πx)/2))))dx  let y=((πx)/2)⇒dx=(2/π)dy  =(1/2)∫_0 ^(π/2) .π((2y)/(πsin(y)))..((2dy)/π)=(2/π)∫_0 ^(π/2) ((ydy)/(sin(y)))  ∫_0 ^(π/2) ((ydy)/(sin(y))),let tg((y/2))=u⇔∫_0 ^1 2((arctan(u))/((2u)/(1+u^2 ))).(2/(1+u^2 ))du  =2∫_0 ^1 ((arctan(u))/u)du=2∫_0 ^1 Σ_(k≥0) (−1)^k (u^(2k+1) /(2k+1)).(du/u)  =Σ_(k≥0) ∫_0 ^1 (−1)^k (u^(2k) /(2k+1))du=Σ_(k≥0) (((−1)^k )/((2k+1)^2 ))=G  ⇒∫_0 ^(π/2) (x/(sin(x)))=2∫_0 ^1 ((tan^(−1) (x))/x)dx=2G  ⇒∫_0 ^1 Γ(1+(x/2))Γ(1−(x/2))dx=(2/π)∫_0 ^(π/2) (dx/(sin(x)))=(2/π).2G=(4/π)G
Γ(1+x2)=x2Γ(x2)01Γ(1x2)Γ(x2).x2dx=1201Γ(1x2)Γ(x2)xdxΓ(1x)Γ(x)=πsin(πx),x]0,1[wefind1201πx2sin(πx2)dxlety=πx2dx=2πdy=120π2.π2yπsin(y)..2dyπ=2π0π2ydysin(y)0π2ydysin(y),lettg(y2)=u012arctan(u)2u1+u2.21+u2du=201arctan(u)udu=201k0(1)ku2k+12k+1.duu=k001(1)ku2k2k+1du=k0(1)k(2k+1)2=G0π2xsin(x)=201tan1(x)xdx=2G01Γ(1+x2)Γ(1x2)dx=2π0π2dxsin(x)=2π.2G=4πG

Leave a Reply

Your email address will not be published. Required fields are marked *