Question Number 110118 by mathdave last updated on 27/Aug/20

Commented by Sarah85 last updated on 27/Aug/20

Commented by maths mind last updated on 30/Aug/20

Commented by Sarah85 last updated on 30/Aug/20

Commented by maths mind last updated on 30/Aug/20

Answered by maths mind last updated on 15/Sep/20
![Γ(1+(x/2))=(x/2)Γ((x/2)) ⇔∫_0 ^1 Γ(1−(x/2))Γ((x/2)).(x/2)dx =(1/2)∫_0 ^1 Γ(1−(x/2))Γ((x/2))xdx Γ(1−x)Γ(x)=(π/(sin(πx))),x∈]0,1[ we find (1/2)∫_0 ^1 π(x/(2sin(((πx)/2))))dx let y=((πx)/2)⇒dx=(2/π)dy =(1/2)∫_0 ^(π/2) .π((2y)/(πsin(y)))..((2dy)/π)=(2/π)∫_0 ^(π/2) ((ydy)/(sin(y))) ∫_0 ^(π/2) ((ydy)/(sin(y))),let tg((y/2))=u⇔∫_0 ^1 2((arctan(u))/((2u)/(1+u^2 ))).(2/(1+u^2 ))du =2∫_0 ^1 ((arctan(u))/u)du=2∫_0 ^1 Σ_(k≥0) (−1)^k (u^(2k+1) /(2k+1)).(du/u) =Σ_(k≥0) ∫_0 ^1 (−1)^k (u^(2k) /(2k+1))du=Σ_(k≥0) (((−1)^k )/((2k+1)^2 ))=G ⇒∫_0 ^(π/2) (x/(sin(x)))=2∫_0 ^1 ((tan^(−1) (x))/x)dx=2G ⇒∫_0 ^1 Γ(1+(x/2))Γ(1−(x/2))dx=(2/π)∫_0 ^(π/2) (dx/(sin(x)))=(2/π).2G=(4/π)G](https://www.tinkutara.com/question/Q113736.png)