Menu Close

prove-that-0-1-2-x-sin-pi-2-x-1-x-dx-1-8pi-m-n-1970-




Question Number 117380 by mnjuly1970 last updated on 11/Oct/20
           ...  prove  that ...      Ω=∫_0 ^( ∞) (1/(2(√x)))sin(π^2 x+(1/x))dx=(1/( (√(8π))))          m.n.1970
provethatΩ=012xsin(π2x+1x)dx=18πm.n.1970
Commented by mindispower last updated on 11/Oct/20
nice one
niceone
Answered by mnjuly1970 last updated on 13/Oct/20
solution::  Recall ::∫_0 ^( ∞) sin(z^2 )dz =^(..fresnel  integral..) (√(π/8))           Ω =^(t=(√x))  ∫_0 ^( ∞) sin(π^2 t^2 +(1/t^2 ))dt       πΩ=∫_0 ^( ∞) πsin(π^2 t^2 +(1/t^2 ))dt  (i)        πΩ   =^(t=(1/(πu))) (1/π) ∫_(0 ) ^( ∞) πsin((1/u^2 )+π^2 u^2 )(du/u^2 )       πΩ=∫_0 ^( ∞) sin(π^2 u^2 +(1/u^2 ))(du/u^2 )   (ii)      (i)+(ii) ::                     2πΩ =∫_0 ^( ∞) (π+(1/x^2 ))sin[(πx−(1/x))^2 +2π]du      2πΩ=^(πx−(1/x)=y) ∫_(−∞) ^(  ∞) sin(y^2 )dy      2πΩ =^(Recall ) 2 (√(π/8))  ⇒ Ω =(√(1/(8π))) ✓                   ...♣M.N.july.1970♣...                          ♠peace  be  upon  you♠
solution::Recall::0sin(z2)dz=..fresnelintegral..π8Ω=t=x0sin(π2t2+1t2)dtπΩ=0πsin(π2t2+1t2)dt(i)πΩ=t=1πu1π0πsin(1u2+π2u2)duu2πΩ=0sin(π2u2+1u2)duu2(ii)(i)+(ii)::2πΩ=0(π+1x2)sin[(πx1x)2+2π]du2πΩ=πx1x=ysin(y2)dy2πΩ=Recall2π8Ω=18πM.N.july.1970peacebeuponyou

Leave a Reply

Your email address will not be published. Required fields are marked *