Menu Close

prove-that-0-1-




Question Number 192112 by Spillover last updated on 08/May/23
prove that.       0!=1
provethat.0!=1
Commented by Frix last updated on 08/May/23
I think it′s defined 0!=1   There′s the idea of the “Empty Product”       It′s obvious that the “Empty Sum”=0       because if we sum up nothing we still       have nothing. Because the sum       log x +log y =log xy we set the “Empty       Product”=1       x!=Π_(k=1) ^x  ⇒ 0! is the “Empty Product”      But we can simply calculate backwards  3!=6  2!=((3!)/3)=2  1!=((2!)/2)=1  0!=((1!)/1)=1  [⇒ x! is not defined for x∈Z^− ]
Ithinkitsdefined0!=1TherestheideaoftheEmptyProductItsobviousthattheEmptySum=0becauseifwesumupnothingwestillhavenothing.Becausethesumlogx+logy=logxywesettheEmptyProduct=1x!=xk=10!istheEmptyProductButwecansimplycalculatebackwards3!=62!=3!3=21!=2!2=10!=1!1=1[x!isnotdefinedforxZ]
Commented by Spillover last updated on 12/May/23
thanks
thanks
Answered by Skabetix last updated on 08/May/23
Hello  X!=X(X−1)!  ⇔(X−1)!=((X!)/X)  Now we just have to test for 0  (1−1)!=((1!)/1)  ⇔0!=(1/1)=1
HelloX!=X(X1)!(X1)!=X!XNowwejusthavetotestfor0(11)!=1!10!=11=1
Answered by Spillover last updated on 12/May/23
^n P_r =((n!)/((n−r)!))       ^n P_n =((n!)/((n−n)!))  =((n!)/((0)!))      but ^n P_n =n!  n!=((n!)/(0!))               0!=((n!)/(n!)) =1   0!=1
nPr=n!(nr)!nPn=n!(nn)!=n!(0)!butnPn=n!n!=n!0!0!=n!n!=10!=1

Leave a Reply

Your email address will not be published. Required fields are marked *