Menu Close

prove-that-0-1-arctan-x-cot-pix-2-dx-3-ln-2-2-2pi-lnpi-ln2-pi-0-ln-1-x-2-e-2pix-1-dx-




Question Number 63852 by aliesam last updated on 10/Jul/19
prove that    ∫_0 ^1 arctan(x) cot(((πx)/2)) dx = ((3 ln^2 (2))/(2π))+((lnπ ln2)/π)+∫_0 ^∞ ((ln(1+x^2 ))/(e^(2πx) +1)) dx
$${prove}\:{that} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({x}\right)\:{cot}\left(\frac{\pi{x}}{\mathrm{2}}\right)\:{dx}\:=\:\frac{\mathrm{3}\:{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}\pi}+\frac{{ln}\pi\:{ln}\mathrm{2}}{\pi}+\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{e}^{\mathrm{2}\pi{x}} +\mathrm{1}}\:{dx} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *