Menu Close

prove-that-0-1-dx-x-e-x-n-0-1-n-n-1-n-1-A-n-with-A-n-0-n-1-t-n-e-t-dt-




Question Number 26756 by abdo imad last updated on 28/Dec/17
prove that  ∫_0 ^1   (dx/(x+ e^x )) = Σ_(n=0) ^∝   (((−1)^n )/((n+1)^(n+1) )) A_n   with  A_n  = ∫_0 ^(n+1)  t^n  e^(−t) dt .
provethat01dxx+ex=n=0(1)n(n+1)n+1AnwithAn=0n+1tnetdt.
Commented by abdo imad last updated on 01/Jan/18
let put I= ∫_0 ^1 (dx/(x+e^x ))  I= ∫_0 ^1 (e^(−x) /(1+x e^(−x) ))dx  but /xe^(−x) /≤1  I= ∫_0 ^1 ( Σ_(n=0) ^∝ (−1)^n x^n  e^(−nx) )e^(−x) dx  = Σ_(n=0) ^∝ (−1)^n ∫_0 ^1  x^n  e^(−(n+1)x) dx  and by the chsngement (n+1)x=t  ∫_0 ^1  x^n e^(−(n+1)x) dx = ∫_0 ^(n+1) ((t/(n+1)))^n e^(−t) (dt/(n+1))  = (1/((n+1)^(n+1) )) ∫_0 ^1  t^n  e^(−t) dt= (A_n /((n+1)^(n+1) ))  and finally ? I= Σ_(n=0) ^(n=∝) (((−1)^n )/((n+1)^(n+1) )) A_n   with A_n  = ∫_0 ^1  t^n  e^(−t) dt .
letputI=01dxx+exI=01ex1+xexdxbut/xex/1I=01(n=0(1)nxnenx)exdx=n=0(1)n01xne(n+1)xdxandbythechsngement(n+1)x=t01xne(n+1)xdx=0n+1(tn+1)netdtn+1=1(n+1)n+101tnetdt=An(n+1)n+1andfinally?I=n=0n=∝(1)n(n+1)n+1AnwithAn=01tnetdt.
Commented by abdo imad last updated on 01/Jan/18
∫_0 ^1 x^n e^(−(n+1)x) dx=(1/((n+1)^(n+1) )) ∫_0 ^(n+1) t^n  e^(−t) dt  = (A_n /((n+1)^(n+1) )) with A_n  = ∫_0 ^(n+1) t^n e^(−t) dt.
01xne(n+1)xdx=1(n+1)n+10n+1tnetdt=An(n+1)n+1withAn=0n+1tnetdt.

Leave a Reply

Your email address will not be published. Required fields are marked *