prove-that-0-1-dx-x-e-x-n-0-1-n-n-1-n-1-A-n-with-A-n-0-n-1-t-n-e-t-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 26756 by abdo imad last updated on 28/Dec/17 provethat∫01dxx+ex=∑n=0∝(−1)n(n+1)n+1AnwithAn=∫0n+1tne−tdt. Commented by abdo imad last updated on 01/Jan/18 letputI=∫01dxx+exI=∫01e−x1+xe−xdxbut/xe−x/⩽1I=∫01(∑n=0∝(−1)nxne−nx)e−xdx=∑n=0∝(−1)n∫01xne−(n+1)xdxandbythechsngement(n+1)x=t∫01xne−(n+1)xdx=∫0n+1(tn+1)ne−tdtn+1=1(n+1)n+1∫01tne−tdt=An(n+1)n+1andfinally?I=∑n=0n=∝(−1)n(n+1)n+1AnwithAn=∫01tne−tdt. Commented by abdo imad last updated on 01/Jan/18 ∫01xne−(n+1)xdx=1(n+1)n+1∫0n+1tne−tdt=An(n+1)n+1withAn=∫0n+1tne−tdt. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-157824Next Next post: let-give-D-x-y-R-2-x-2-x-y-2-4-and-0-y-1-calculate-D-ln-xy-x-2-y-2-dxdy- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.