Menu Close

prove-that-0-1-ln-1-x-1-x-dx-x-1-x-2-pi-2-2-m-n-




Question Number 164103 by mnjuly1970 last updated on 14/Jan/22
     prove that        Ω=∫_0 ^( 1) ln(((1+x)/(1−x)) ).(dx/(x (√( 1−x^( 2) )))) = (π^( 2) /2)       −− m.n−−
provethatΩ=01ln(1+x1x).dxx1x2=π22m.n
Answered by Lordose last updated on 14/Jan/22
Ω =^(x=((1−x)/(1+x))) 2∫_0 ^( 1) ((ln((1/x)))/((1+x)^2 (((1−x)/(1+x))(√(1−(((1−x)/(1+x)))^2 ))))dx  Ω = ∫_0 ^( 1) ((ln((1/x)))/( (√x)(1−x)))dx =^(x=x^2 ) 4∫_0 ^( 1) ((ln((1/x)))/((1−x^2 )))dx  Ω = −4Σ_(k=1) ^∞ ∫_0 ^( 1) x^(2k) ln(x)dx =^(IBP) 4Σ_(k=1) ^∞ (1/((2k+1)^2 ))  Ω = Σ_(k=1) ^∞ (1/((k+(1/2))^2 ))dx = 𝛙^((1)) ((1/2))  𝛀 = (𝛑^2 /2) ▲▲▲
Ω=x=1x1+x201ln(1x)(1+x)2(1x1+x1(1x1+x)2dxΩ=01ln(1x)x(1x)dx=x=x2401ln(1x)(1x2)dxΩ=4k=101x2kln(x)dx=IBP4k=11(2k+1)2Ω=k=11(k+12)2dx=ψ(1)(12)Ω=π22
Commented by mnjuly1970 last updated on 14/Jan/22
mercey
mercey

Leave a Reply

Your email address will not be published. Required fields are marked *