Menu Close

Prove-that-0-1-ln-x-x-n-x-n-1-1-dx-1-n-2-1-2-n-1-1-n-




Question Number 160895 by HongKing last updated on 08/Dec/21
Prove that:  ∫_( 0) ^( 1)  ((ln(x))/(x^n  + x^(n-1)  + ... + 1)) dx = (1/n^2 ) [𝛙^((1)) ((2/n)) - 𝛙^((1)) ((1/n))]
Provethat:10ln(x)xn+xn1++1dx=1n2[ψ(1)(2n)ψ(1)(1n)]
Answered by Kamel last updated on 08/Dec/21
Ω_n =∫_0 ^1 ((Ln(x)(1−x))/(1−x^n ))dx=[(d/ds)∫_0 ^1 ((x^s −x^(s+1) )/(1−x^n ))dx]_(s=0)         =^(t=x^n ) (1/n)[(d/ds_ )∫_0 ^1 ((t^(((s+1)/n)−1) −1+1−t^(((s+2)/n)−1) )/(1−t))dt]_(s=0) =(1/n^2 )(Ψ^((1)) ((2/n))−Ψ^((1)) ((1/n)))
Ωn=01Ln(x)(1x)1xndx=[dds01xsxs+11xndx]s=0=t=xn1n[dds01ts+1n11+1ts+2n11tdt]s=0=1n2(Ψ(1)(2n)Ψ(1)(1n))
Commented by HongKing last updated on 10/Dec/21
thank you so much dear Sir
thankyousomuchdearSir

Leave a Reply

Your email address will not be published. Required fields are marked *