prove-that-0-1-lnx-p-1-x-2-p-n-0-1-n-2n-1-p-1-p-integr- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33351 by caravan msup abdo. last updated on 14/Apr/18 provethat∫01(−lnx)p1+x2=p!∑n=0∞(−1)n(2n+1)p+1pintegr. Commented by math khazana by abdo last updated on 19/Apr/18 letputAp=∫01(−lnx)p1+x2dxAp=(−1)p∫01(lnx)p1+x2dx=(−1)p∫01(∑n=0∞(−1)nx2n)(lnx)pdx=∑n=0∞(−1)n+p∫01x2n(lnx)pdxletfindIn,p=∫01xn(lnx)pdxbypartsIn,p=[1n+1xn+1(lnx)p]01−∫011n+1xn+1px(lnx)p−1=−pn+1∫01xn(lnx)p−1dx=−pn+1In,p−1⇒In,p=(−p)(−(p−1))(n+1)2In,p−2=….=(−1)pp!(n+1)pIn,0In,0=∫01xndx=1n+1⇒In,p=(−1)pp!(n+1)p+1⇒∫01x2n(lnx)pdx=(−1)pp!(2n+1)p+1andAp=∑n=0∞(−1)n+p(−1)pp!(2n+1)p+1=p!∑n=0∞(−1)n(2n+1)p+1. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-98887Next Next post: In-ABC-if-cot-A-cot-C-1-2-cot-B-cot-C-1-18-then-tan-C- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.