Menu Close

prove-that-0-1-lnx-p-1-x-2-p-n-0-1-n-2n-1-p-1-p-integr-




Question Number 33351 by caravan msup abdo. last updated on 14/Apr/18
prove that  ∫_0 ^1  (((−lnx)^p )/(1+x^2 )) =p! Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^(p+1) ))  p integr.
provethat01(lnx)p1+x2=p!n=0(1)n(2n+1)p+1pintegr.
Commented by math khazana by abdo last updated on 19/Apr/18
let put A_p = ∫_0 ^1    (((−lnx)^p )/(1+x^2 ))dx  A_p = (−1)^p   ∫_0 ^1    (((lnx)^p )/(1+x^2 ))dx  =(−1)^p  ∫_0 ^1 ( Σ_(n=0) ^∞ (−1)^n  x^(2n) )(lnx)^p dx  = Σ_(n=0) ^∞  (−1)^(n+p)   ∫_0 ^1    x^(2n)  (lnx)^p  dx  let find  I_(n,p) = ∫_0 ^1   x^n  (lnx)^p dx   by parts  I_(n,p) = [(1/(n+1)) x^(n+1) (lnx)^p  ]_0 ^1   − ∫_0 ^1    (1/(n+1))x^(n+1)   (p/x) (lnx)^(p−1)   =−(p/(n+1)) ∫_0 ^1   x^n  (lnx)^(p−1)  dx =((−p)/(n+1)) I_(n,p−1)  ⇒  I_(n,p)   = (((−p)(−(p−1)))/((n+1)^2 )) I_(n,p−2)  =....= (((−1)^p p!)/((n+1)^p ))  I_(n,0)   I_(n,0) = ∫_0 ^1  x^n  dx = (1/(n+1)) ⇒ I_(n,p)  = (((−1)^p  p!)/((n+1)^(p+1) ))  ⇒  ∫_0 ^1  x^(2n) (lnx)^p dx = (((−1)^p  p!)/((2n+1)^(p+1) ))  and  A_p  =Σ_(n=0) ^∞  (−1)^(n+p)   (((−1)^p  p!)/((2n+1)^(p+1) ))  =p! Σ_(n=0) ^∞    (((−1)^n )/((2n+1)^(p+1) )) .
letputAp=01(lnx)p1+x2dxAp=(1)p01(lnx)p1+x2dx=(1)p01(n=0(1)nx2n)(lnx)pdx=n=0(1)n+p01x2n(lnx)pdxletfindIn,p=01xn(lnx)pdxbypartsIn,p=[1n+1xn+1(lnx)p]01011n+1xn+1px(lnx)p1=pn+101xn(lnx)p1dx=pn+1In,p1In,p=(p)((p1))(n+1)2In,p2=.=(1)pp!(n+1)pIn,0In,0=01xndx=1n+1In,p=(1)pp!(n+1)p+101x2n(lnx)pdx=(1)pp!(2n+1)p+1andAp=n=0(1)n+p(1)pp!(2n+1)p+1=p!n=0(1)n(2n+1)p+1.

Leave a Reply

Your email address will not be published. Required fields are marked *