Menu Close

prove-that-0-1-t-2p-1-ln-t-t-2-1-dt-pi-2-24-1-4-k-1-p-1-k-2-




Question Number 40886 by prof Abdo imad last updated on 28/Jul/18
prove that   ∫_0 ^1   ((t^(2p+1) ln(t))/(t^2 −1))dt =(π^2 /(24)) −(1/4)Σ_(k=1) ^p  (1/k^2 )
$${prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}^{\mathrm{2}{p}+\mathrm{1}} {ln}\left({t}\right)}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{24}}\:−\frac{\mathrm{1}}{\mathrm{4}}\sum_{{k}=\mathrm{1}} ^{{p}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *