Menu Close

prove-that-0-1-x-2-6-x-2-4-x-2-9-20-




Question Number 43545 by peter frank last updated on 11/Sep/18
prove that ∫  _0 ^1  ((x^2 +6)/((x^2 +4)(x^2 +9)))=(Π/(20))
provethat10x2+6(x2+4)(x2+9)=Π20
Answered by behi83417@gmail.com last updated on 12/Sep/18
I=(1/2)∫((2x^2 +12)/((x^2 +4)(x^2 +9)))dx=  =(1/2)[∫((1/(x^2 +9))+(1/(x^2 +4))−(1/5)((1/(x^2 +4))−(1/(x^2 +9)))]dx=  =(3/5)∫ (dx/(x^2 +9))+(2/5)∫ (dx/(x^2 +4))=  =(3/5).(1/3)tg^(−1) ((x/3))+(2/5).(1/2)tg^(−1) ((x/2))+c=  =(1/5)tg^(−1) (((x/3)+(x/2))/(1−(x^2 /6)))=(1/5)tg^(−1) ((5x)/(6−x^2 ))+c.  I=F(1)−F(0)=(1/5)[tg^(−1) (5/5)−0]=  =(1/5).(π/4)=(π/(20)). ■
I=122x2+12(x2+4)(x2+9)dx==12[(1x2+9+1x2+415(1x2+41x2+9)]dx==35dxx2+9+25dxx2+4==35.13tg1(x3)+25.12tg1(x2)+c==15tg1x3+x21x26=15tg15x6x2+c.I=F(1)F(0)=15[tg1550]==15.π4=π20.◼

Leave a Reply

Your email address will not be published. Required fields are marked *