Menu Close

prove-that-0-1-x-2-x-2-1-2-ln-8pi-




Question Number 167048 by mnjuly1970 last updated on 05/Mar/22
       prove that    Φ= ∫_0 ^( 1) x.ψ (2+x )= 2 −(1/2)ln(8π)            −−−
$$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\Phi=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}.\psi\:\left(\mathrm{2}+{x}\:\right)=\:\mathrm{2}\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{8}\pi\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:−−− \\ $$
Answered by shikaridwan last updated on 05/Mar/22
ψ(x+2)=ψ(x+1)+(1/(x+1))=ψ(x)+(1/x)+(1/(x+1))  ∫_0 ^1 xψ(2+x)dx=∫_0 ^1 2−(1/(x+1))+xψ(x)dx  =2−log (2)+[xlog(Γ(x))]_0 ^1 −∫_0 ^1 log(Γ(x))dx  =2−log (2)−log((√(2π)))  =2−(1/2)log (8π)
$$\psi\left({x}+\mathrm{2}\right)=\psi\left({x}+\mathrm{1}\right)+\frac{\mathrm{1}}{{x}+\mathrm{1}}=\psi\left({x}\right)+\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}\psi\left(\mathrm{2}+{x}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{2}−\frac{\mathrm{1}}{{x}+\mathrm{1}}+{x}\psi\left({x}\right){dx} \\ $$$$=\mathrm{2}−\mathrm{log}\:\left(\mathrm{2}\right)+\left[{xlog}\left(\Gamma\left({x}\right)\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left(\Gamma\left({x}\right)\right){dx} \\ $$$$=\mathrm{2}−\mathrm{log}\:\left(\mathrm{2}\right)−{log}\left(\sqrt{\mathrm{2}\pi}\right) \\ $$$$=\mathrm{2}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{log}\:\left(\mathrm{8}\pi\right) \\ $$
Commented by shikaridwan last updated on 05/Mar/22
Hi sir! Can you recognize me?
$${Hi}\:{sir}!\:{Can}\:{you}\:{recognize}\:{me}? \\ $$
Commented by mnjuly1970 last updated on 05/Mar/22
thsnk you so much  Mr.Dwaypayan ...thanks alot     and  Welcome again  ....
$${thsnk}\:{you}\:{so}\:{much} \\ $$$${Mr}.{Dwaypayan}\:…{thanks}\:{alot} \\ $$$$\:\:\:{and}\:\:{Welcome}\:{again}\:\:…. \\ $$$$\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *