Menu Close

Prove-that-0-1-x-a-1-log-x-dx-log-a-1-




Question Number 45117 by rahul 19 last updated on 09/Oct/18
Prove that ∫_0 ^1  ((x^a −1)/(log x)) dx = log (a+1).
Provethat01xa1logxdx=log(a+1).
Commented by maxmathsup by imad last updated on 09/Oct/18
for a>−1 let f(a) =∫_0 ^1   ((x^a −1)/(ln(x)))dx changement ln(x) =−t give  f(a) =−∫_0 ^(+∞)    ((e^(−at)  −1)/(−t)) (−1)e^(−t) dt =−∫_0 ^∞  ((e^(−(a+1)t) −e^(−t) )/t) dt  =∫_0 ^∞    ((e^(−t)  −e^(−(a+1)t) )/t)dt ⇒f^′ (a) =∫_0 ^∞    e^(−(a+1)t) dt=[−(1/(a+1))e^(−(a+1)t) ]_(t=0) ^(+∞)   =(1/(a+1)) ⇒f(a) =ln∣a+1∣ +c =ln(a+1) +c  but   f(0) =0 =ln(1)+c ⇒c=0 ⇒f(a)=ln(a+1) .
fora>1letf(a)=01xa1ln(x)dxchangementln(x)=tgivef(a)=0+eat1t(1)etdt=0e(a+1)tettdt=0ete(a+1)ttdtf(a)=0e(a+1)tdt=[1a+1e(a+1)t]t=0+=1a+1f(a)=lna+1+c=ln(a+1)+cbutf(0)=0=ln(1)+cc=0f(a)=ln(a+1).
Commented by rahul 19 last updated on 09/Oct/18
thanks prof Abdo ☺️
Commented by turbo msup by abdo last updated on 09/Oct/18
you are welcome sir.
youarewelcomesir.
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Oct/18
I(a)=∫_0 ^1 ((x^a −1)/(lnx))dx  (dI/da)=∫_0 ^1 (1/(lnx))(∂/∂a)(x^a −1)dx       =∫_0 ^1 (1/(lnx))×x^a ×lnxdx       =∫_0 ^1 x^a dx        =∣(x^(a+1) /(a+1))∣_0 ^1         =(1/(a+1))  ∫dI=∫(da/(a+1))   I=ln(a+1)
I(a)=01xa1lnxdxdIda=011lnxa(xa1)dx=011lnx×xa×lnxdx=01xadx=∣xa+1a+101=1a+1dI=daa+1I=ln(a+1)
Commented by rahul 19 last updated on 09/Oct/18
Sir , how will this come to my mind first we have to differentiate!! ����
Commented by tanmay.chaudhury50@gmail.com last updated on 09/Oct/18
i shall post some example...this type intregal  are advanced intregal...from book i shall post..
ishallpostsomeexamplethistypeintregalareadvancedintregalfrombookishallpost..
Commented by rahul 19 last updated on 12/Oct/18
Sir,plss post 2−3 examples.....
Sir,plsspost23examples..

Leave a Reply

Your email address will not be published. Required fields are marked *