Question Number 152350 by mnjuly1970 last updated on 27/Aug/21
$$ \\ $$$$\:\:\:\mathrm{prove}\:\mathrm{that}\:…. \\ $$$$\:\: \\ $$$$\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{x}.\:{ln}^{\:\mathrm{2}} \left(\:\mathrm{1}+\:{x}\:\right)}{\mathrm{1}\:+\:{x}^{\:\mathrm{2}} }\:\:\:{dx}\:=\frac{\mathrm{1}}{\mathrm{96}}\:{ln}\left(\mathrm{2}\:\right)\:\left(\:\pi^{\:\mathrm{2}} \:+\:\mathrm{4}\:{ln}^{\:\mathrm{2}} \:\left(\mathrm{2}\:\right)\right)….\blacksquare\:\:\:\:\: \\ $$$$\:\:\:\mathrm{M}.\mathrm{N}.. \\ $$$$ \\ $$$$ \\ $$
Answered by mindispower last updated on 27/Aug/21
$${x}\rightarrow\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}\Rightarrow{dx}=−\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\Leftrightarrow\phi=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}{ln}^{\mathrm{2}} \left(\frac{\mathrm{2}}{\mathrm{1}+{t}}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }.{dt} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{t}}{\left(\mathrm{1}+{t}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\left({ln}^{\mathrm{2}} \left(\mathrm{2}\right)+{ln}^{\mathrm{2}} \left(\mathrm{1}+{t}\right)−\mathrm{2}{ln}\left(\mathrm{2}\right){ln}\left(\mathrm{1}+{t}\right)\right){dt} \\ $$$$\frac{\mathrm{1}−{t}}{\left(\mathrm{1}+{t}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}=\frac{\mathrm{1}}{\mathrm{1}+{t}}−\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+{t}}−\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)\left({ln}^{\mathrm{2}} \left(\mathrm{2}\right)+{ln}^{\mathrm{2}} \left(\mathrm{1}+{t}\right)−\mathrm{2}{ln}\left(\mathrm{2}\right){ln}\left(\mathrm{1}+{t}\right)\right){dt} \\ $$$$={ln}^{\mathrm{2}} \left(\mathrm{2}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+{t}}−\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}}−\phi \\ $$$$−\mathrm{2}{ln}\left(\mathrm{2}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}}{dt}+\mathrm{2}{ln}\left(\mathrm{2}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\mathrm{2}\phi={ln}^{\mathrm{2}} \left(\mathrm{2}\right)\left[\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\right]+\frac{\mathrm{1}}{\mathrm{3}}{ln}^{\mathrm{3}} \left(\mathrm{2}\right)−\mathrm{2}{ln}\left(\mathrm{2}\right).\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$$+\mathrm{2}{ln}\left(\mathrm{2}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }={S} \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tln}\left(\mathrm{1}+{at}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$${S}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\mathrm{2}} {dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{at}\right)}{da} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{a}\left({aln}\left(\mathrm{4}\right)−\pi\right)+\mathrm{4}{ln}\left({a}+\mathrm{1}\right)}{\mathrm{4}\left({a}^{\mathrm{3}} +{a}\right)} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{aln}\left(\mathrm{4}\right)−\pi}{\mathrm{4}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}{da}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{a}\right)}{{a}+{a}^{\mathrm{3}} }{da} \\ $$$$=\frac{{ln}\left(\mathrm{4}\right)}{\mathrm{8}}{ln}\left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{16}}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{a}\right)}{{a}}−\frac{{aln}\left(\mathrm{1}+{a}\right)}{\mathrm{1}+{a}^{\mathrm{2}} }{da} \\ $$$$=\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{4}}−\frac{\pi^{\mathrm{2}} }{\mathrm{16}}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−\left(−{a}\right)\right)}{−{a}}{d}\left(−{a}\right)−{S} \\ $$$${S}=\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{8}}−\frac{\pi^{\mathrm{2}} }{\mathrm{32}}−\frac{\mathrm{1}}{\mathrm{2}}{li}_{\mathrm{2}} \left(−\mathrm{1}\right) \\ $$$$=\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{8}}+\frac{\pi^{\mathrm{2}} }{\mathrm{96}} \\ $$$$\mathrm{2}\phi=−\frac{{ln}^{\mathrm{3}} \left(\mathrm{2}\right.}{\mathrm{6}}+\mathrm{2}{ln}\left(\mathrm{2}\right)\left(\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{8}}+\frac{\pi^{\mathrm{2}} }{\mathrm{96}}\right) \\ $$$$=−\frac{{ln}^{\mathrm{3}} \left(\mathrm{2}\right)}{\mathrm{6}}+\frac{{ln}^{\mathrm{3}} \left(\mathrm{2}\right)}{\mathrm{4}}+\frac{\pi^{\mathrm{2}} {ln}\left(\mathrm{2}\right)}{\mathrm{48}}=\frac{{ln}^{\mathrm{3}} \left(\mathrm{2}\right)}{\mathrm{12}}+\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{48}}\pi^{\mathrm{2}} \\ $$$$=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{48}}\left(\pi^{\mathrm{2}} +\mathrm{4}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)\right) \\ $$$$\phi=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{96}}\left(\pi^{\mathrm{2}} +\mathrm{4}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)\right) \\ $$
Commented by mindispower last updated on 29/Aug/21
$${thanx}\:{withe}\:{pleasur} \\ $$
Commented by mnjuly1970 last updated on 28/Aug/21
$$\:\:\:\:{very}\:{nice}\:{sir}\:{power}…{grateful} \\ $$