Menu Close

prove-that-0-1-x-ln-2-1-x-1-x-2-dx-1-96-ln-2-pi-2-4-ln-2-2-M-N-




Question Number 152350 by mnjuly1970 last updated on 27/Aug/21
     prove that ....      ๐›—:=โˆซ_0 ^( 1) (( x. ln^( 2) ( 1+ x ))/(1 + x^( 2) ))   dx =(1/(96)) ln(2 ) ( ฯ€^( 2)  + 4 ln^( 2)  (2 ))....โ–           M.N..
provethatโ€ฆ.ฯ•:=โˆซ01x.ln2(1+x)1+x2dx=196ln(2)(ฯ€2+4ln2(2))โ€ฆ.โ—ผM.N..
Answered by mindispower last updated on 27/Aug/21
xโ†’((1โˆ’t)/(1+t))โ‡’dx=โˆ’((2dt)/((1+t)^2 ))    โ‡”ฯ†=โˆซ_0 ^1 ((((1โˆ’t)/(1+t))ln^2 ((2/(1+t))))/(1+t^2 )).dt  โˆซ_0 ^1 ((1โˆ’t)/((1+t)(1+t^2 )))(ln^2 (2)+ln^2 (1+t)โˆ’2ln(2)ln(1+t))dt  ((1โˆ’t)/((1+t)(1+t^2 )))=(1/(1+t))โˆ’(t/(1+t^2 ))  =โˆซ_0 ^1 ((1/(1+t))โˆ’(t/(1+t^2 )))(ln^2 (2)+ln^2 (1+t)โˆ’2ln(2)ln(1+t))dt  =ln^2 (2)โˆซ_0 ^1 ((1/(1+t))โˆ’(t/(1+t^2 )))dt+โˆซ_0 ^1 ((ln^2 (1+t))/(1+t))โˆ’ฯ†  โˆ’2ln(2)โˆซ_0 ^1 ((ln(1+t))/(1+t))dt+2ln(2)โˆซ_0 ^1 ((tln(1+t))/(1+t^2 ))dt  2ฯ†=ln^2 (2)[((ln(2))/2)]+(1/3)ln^3 (2)โˆ’2ln(2).((ln^2 (2))/2)  +2ln(2)โˆซ_0 ^1 ((tln(1+t))/(1+t^2 ))dt  โˆซ_0 ^1 ((tln(1+t))/(1+t^2 ))=S  f(a)=โˆซ_0 ^1 ((tln(1+at))/(1+t^2 ))dt  S=โˆซ_0 ^1 โˆซ_0 ^1 ((t^2 dt)/((1+t^2 )(1+at)))da  =โˆซ_0 ^1 ((a(aln(4)โˆ’ฯ€)+4ln(a+1))/(4(a^3 +a)))  =โˆซ_0 ^1 ((aln(4)โˆ’ฯ€)/(4(1+a^2 )))da+โˆซ_0 ^1 ((ln(1+a))/(a+a^3 ))da  =((ln(4))/8)ln(2)โˆ’(ฯ€^2 /(16))+โˆซ_0 ^1 ((ln(1+a))/a)โˆ’((aln(1+a))/(1+a^2 ))da  =((ln^2 (2))/4)โˆ’(ฯ€^2 /(16))+โˆซ_0 ^1 ((ln(1โˆ’(โˆ’a)))/(โˆ’a))d(โˆ’a)โˆ’S  S=((ln^2 (2))/8)โˆ’(ฯ€^2 /(32))โˆ’(1/2)li_2 (โˆ’1)  =((ln^2 (2))/8)+(ฯ€^2 /(96))  2ฯ†=โˆ’((ln^3 (2)/6)+2ln(2)(((ln^2 (2))/8)+(ฯ€^2 /(96)))  =โˆ’((ln^3 (2))/6)+((ln^3 (2))/4)+((ฯ€^2 ln(2))/(48))=((ln^3 (2))/(12))+((ln(2))/(48))ฯ€^2   =((ln(2))/(48))(ฯ€^2 +4ln^2 (2))  ฯ†=((ln(2))/(96))(ฯ€^2 +4ln^2 (2))
xโ†’1โˆ’t1+tโ‡’dx=โˆ’2dt(1+t)2โ‡”ฯ•=โˆซ011โˆ’t1+tln2(21+t)1+t2.dtโˆซ011โˆ’t(1+t)(1+t2)(ln2(2)+ln2(1+t)โˆ’2ln(2)ln(1+t))dt1โˆ’t(1+t)(1+t2)=11+tโˆ’t1+t2=โˆซ01(11+tโˆ’t1+t2)(ln2(2)+ln2(1+t)โˆ’2ln(2)ln(1+t))dt=ln2(2)โˆซ01(11+tโˆ’t1+t2)dt+โˆซ01ln2(1+t)1+tโˆ’ฯ•โˆ’2ln(2)โˆซ01ln(1+t)1+tdt+2ln(2)โˆซ01tln(1+t)1+t2dt2ฯ•=ln2(2)[ln(2)2]+13ln3(2)โˆ’2ln(2).ln2(2)2+2ln(2)โˆซ01tln(1+t)1+t2dtโˆซ01tln(1+t)1+t2=Sf(a)=โˆซ01tln(1+at)1+t2dtS=โˆซ01โˆซ01t2dt(1+t2)(1+at)da=โˆซ01a(aln(4)โˆ’ฯ€)+4ln(a+1)4(a3+a)=โˆซ01aln(4)โˆ’ฯ€4(1+a2)da+โˆซ01ln(1+a)a+a3da=ln(4)8ln(2)โˆ’ฯ€216+โˆซ01ln(1+a)aโˆ’aln(1+a)1+a2da=ln2(2)4โˆ’ฯ€216+โˆซ01ln(1โˆ’(โˆ’a))โˆ’ad(โˆ’a)โˆ’SS=ln2(2)8โˆ’ฯ€232โˆ’12li2(โˆ’1)=ln2(2)8+ฯ€2962ฯ•=โˆ’ln3(26+2ln(2)(ln2(2)8+ฯ€296)=โˆ’ln3(2)6+ln3(2)4+ฯ€2ln(2)48=ln3(2)12+ln(2)48ฯ€2=ln(2)48(ฯ€2+4ln2(2))ฯ•=ln(2)96(ฯ€2+4ln2(2))
Commented by mindispower last updated on 29/Aug/21
thanx withe pleasur
thanxwithepleasur
Commented by mnjuly1970 last updated on 28/Aug/21
    very nice sir power...grateful
verynicesirpowerโ€ฆgrateful

Leave a Reply

Your email address will not be published. Required fields are marked *