Question Number 175244 by infinityaction last updated on 24/Aug/22
$$\:{prove}\:{that} \\ $$$$\:\int_{\mathrm{0}} ^{{a}} \int_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }} \frac{{dx}\:{dy}}{\left(\mathrm{1}+{e}^{{y}} \right)\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }}\:=\:\frac{\pi}{\mathrm{2}}\mathrm{log}\:\frac{\mathrm{2}{e}^{{a}} }{\mathrm{1}+{e}^{{a}} } \\ $$
Answered by Ar Brandon last updated on 24/Aug/22
$${I}=\int_{\mathrm{0}} ^{{a}} \int_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }} \frac{{dxd}\mathrm{y}}{\left(\mathrm{1}+{e}^{\mathrm{y}} \right)\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }} \\ $$$$\:\:=\int_{\mathrm{0}} ^{{a}} \frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{y}} }\int_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }} \frac{{dx}}{\:\sqrt{\left({a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)−{x}^{\mathrm{2}} }}{d}\mathrm{y} \\ $$$$\:\:=\int_{\mathrm{0}} ^{{a}} \frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{y}} }\left[\mathrm{arcsin}\left(\frac{{x}}{\:\sqrt{{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }}\right)\right]_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }} {d}\mathrm{y} \\ $$$$\:\:=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{{a}} \frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{y}} }{d}\mathrm{y}=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{{a}} \frac{{e}^{−\mathrm{y}} }{{e}^{−\mathrm{y}} +\mathrm{1}}{d}\mathrm{y} \\ $$$$\:\:=−\frac{\pi}{\mathrm{2}}\left[\mathrm{ln}\left({e}^{−\mathrm{y}} +\mathrm{1}\right)\right]_{\mathrm{0}} ^{{a}} =\frac{\pi}{\mathrm{2}}\left(\mathrm{ln2}−\mathrm{ln}\left({e}^{−{a}} +\mathrm{1}\right)\right) \\ $$$$\:\:=\frac{\pi}{\mathrm{2}}\mathrm{ln}\left(\frac{\mathrm{2}}{{e}^{−{a}} +\mathrm{1}}\right)=\frac{\pi}{\mathrm{2}}\mathrm{ln}\left(\frac{\mathrm{2}{e}^{{a}} }{\mathrm{1}+{e}^{{a}} }\right) \\ $$
Commented by infinityaction last updated on 24/Aug/22
$${thanks}\:{sir} \\ $$