Menu Close

prove-that-0-a-0-a-2-x-2-dx-dy-1-e-y-a-2-x-2-y-2-pi-2-log-2e-a-1-e-a-




Question Number 175244 by infinityaction last updated on 24/Aug/22
 prove that   ∫_0 ^a ∫_0 ^(√(a^2 −x^2 )) ((dx dy)/((1+e^y )(√(a^2 −x^2 −y^2 )))) = (π/2)log ((2e^a )/(1+e^a ))
provethat0a0a2x2dxdy(1+ey)a2x2y2=π2log2ea1+ea
Answered by Ar Brandon last updated on 24/Aug/22
I=∫_0 ^a ∫_0 ^(√(a^2 −y^2 )) ((dxdy)/((1+e^y )(√(a^2 −x^2 −y^2 ))))    =∫_0 ^a (1/(1+e^y ))∫_0 ^(√(a^2 −y^2 )) (dx/( (√((a^2 −y^2 )−x^2 ))))dy    =∫_0 ^a (1/(1+e^y ))[arcsin((x/( (√(a^2 −y^2 )))))]_0 ^(√(a^2 −y^2 )) dy    =(π/2)∫_0 ^a (1/(1+e^y ))dy=(π/2)∫_0 ^a (e^(−y) /(e^(−y) +1))dy    =−(π/2)[ln(e^(−y) +1)]_0 ^a =(π/2)(ln2−ln(e^(−a) +1))    =(π/2)ln((2/(e^(−a) +1)))=(π/2)ln(((2e^a )/(1+e^a )))
I=0a0a2y2dxdy(1+ey)a2x2y2=0a11+ey0a2y2dx(a2y2)x2dy=0a11+ey[arcsin(xa2y2)]0a2y2dy=π20a11+eydy=π20aeyey+1dy=π2[ln(ey+1)]0a=π2(ln2ln(ea+1))=π2ln(2ea+1)=π2ln(2ea1+ea)
Commented by infinityaction last updated on 24/Aug/22
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *