Menu Close

prove-that-0-a-a-2-x-2-dx-pia-2-4-




Question Number 123598 by aurpeyz last updated on 26/Nov/20
prove that ∫_0 ^a (√(a^2 −x^2 ))dx=((πa^2 )/4)
provethata0a2x2dx=πa24
Answered by Dwaipayan Shikari last updated on 26/Nov/20
∫_0 ^a (√(a^2 −x^2 )) dx        x=asinθ  ∫_0 ^(π/2) acosθ(√(a^2 −a^2 sin^2 θ)) dθ  =a^2 ∫_0 ^(π/2) cos^2 θ =(a^2 /2)∫_0 ^(π/2) 1+cos2θ dx  =((πa^2 )/4)+(a^2 /2)∫_0 ^(π/2) cos2θ =((πa^2 )/4)+(a^2 /4)[cos2θ]_0 ^(π/2) =((πa^2 )/4)
0aa2x2dxx=asinθ0π2acosθa2a2sin2θdθ=a20π2cos2θ=a220π21+cos2θdx=πa24+a220π2cos2θ=πa24+a24[cos2θ]0π2=πa24

Leave a Reply

Your email address will not be published. Required fields are marked *