Menu Close

prove-that-0-arctan-x-2-x-2-dx-pi-2-




Question Number 124888 by mnjuly1970 last updated on 06/Dec/20
:::::  prove that     ::::      φ=∫_0 ^( ∞) ((arctan(x^2 ))/x^2 )dx=(π/( (√2)))
:::::provethat::::ϕ=0arctan(x2)x2dx=π2
Answered by mnjuly1970 last updated on 06/Dec/20
solution   φ=^(x=(1/t)⇒) ∫_0 ^( ∞) arccot(t^2 )dt=[tarccot(t^2 )]_0 ^∞ +2∫_0 ^( ∞) (t^2 /(1+t^4 ))dt  =^(t^4 =u) (1/2)∫_0 ^( ∞) ((u^(1/2) u^((−3)/4) )/(1+u))du=(1/2)Γ((3/4))Γ((1/4))  =(1/2) (π/(sin((π/4))))=(1/2) ((2π)/( (√2)))=(π/( (√2))) ✓
solutionϕ=x=1t0arccot(t2)dt=[tarccot(t2)]0+20t21+t4dt=t4=u120u12u341+udu=12Γ(34)Γ(14)=12πsin(π4)=122π2=π2
Commented by Dwaipayan Shikari last updated on 06/Dec/20
Great sir!
Greatsir!
Commented by mnjuly1970 last updated on 06/Dec/20
thanks alot..
thanksalot..
Answered by Dwaipayan Shikari last updated on 06/Dec/20
∫_0 ^∞ ((tan^(−1) (x^2 ))/x^2 )dx =[ −((tan^(−1) x^2 )/x)]_0 ^∞ +∫_0 ^∞ ((2x)/(x(x^4 +1)))dx  =2∫_0 ^∞ (dx/((x^4 +1)))=∫_0 ^(π/2) (dθ/( (√(tanθ))(tan^2 θ+1)))sec^2 θ       x^2 =tanθ  =2∫_0 ^(π/2) (1/( (√(tanθ))))dθ=2∫_0 ^(π/2) (1/( (√(cotθ))))dθ=I  ⇒2I=2∫_0 ^(π/2) ((sinθ+cosθ)/( (√(sinθcosθ))))dθ  ⇒I=(√2)∫_0 ^(π/2) ((sinθ+cosθ)/( (√(1−(sinθ−cosθ)^2 ))))dθ=(√2)∫_0 ^1 (dt/( (√(1−t^2 ))))  ⇒I=(√2)[sin^(−1) t]_0 ^1 =(π/( (√2)))
0tan1(x2)x2dx=[tan1x2x]0+02xx(x4+1)dx=20dx(x4+1)=0π2dθtanθ(tan2θ+1)sec2θx2=tanθ=20π21tanθdθ=20π21cotθdθ=I2I=20π2sinθ+cosθsinθcosθdθI=20π2sinθ+cosθ1(sinθcosθ)2dθ=201dt1t2I=2[sin1t]01=π2
Commented by mnjuly1970 last updated on 06/Dec/20
thank you mr  dwaipayan..
thankyoumrdwaipayan..
Answered by mathmax by abdo last updated on 06/Dec/20
I =∫_0 ^∞  ((arctan(x^2 ))/x^2 )dx by psrts  I=[−(1/x)arctan(x^2 )]_0 ^∞ +∫_0 ^∞ (1/x)×((2x)/(1+x^4 ))dx  =2∫_0 ^∞   (dx/(1+x^4 )) =_(x=t^(1/4) )   2 ∫_0 ^∞    (1/(4(1+t)))t^((1/4)−1) dt =(1/2)∫_0 ^∞   (t^((1/4)−1) /(1+t))dt  =(1/2)×(π/(sin((π/4))))=(π/(2×(1/( (√2))))) =(π/( (√2))) ⇒I =(π/( (√2)))
I=0arctan(x2)x2dxbypsrtsI=[1xarctan(x2)]0+01x×2x1+x4dx=20dx1+x4=x=t142014(1+t)t141dt=120t1411+tdt=12×πsin(π4)=π2×12=π2I=π2

Leave a Reply

Your email address will not be published. Required fields are marked *