Menu Close

prove-that-0-cos-x-2-dx-0-sin-x-2-dx-by-using-only-series-




Question Number 41678 by math khazana by abdo last updated on 11/Aug/18
prove that  ∫_0 ^∞  cos(x^2 )dx=∫_0 ^∞  sin(x^2 )dx by using  only series.
provethat0cos(x2)dx=0sin(x2)dxbyusingonlyseries.
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Aug/18
p+iq=∫_0 ^∞ e^(ix^2 ) dx  −t=ix^2     i^2 t=ix^2   it=x^2   2xdx=idt  dx=((idt)/(2x))=((idt)/(2(√(it)) ))=(((√i) t^((−1)/2) )/2)dt  ∫_0 ^∞ e^(−t) .(((√i) t^((−1)/2) )/2)dt  (((√i) )/2)∫_0 ^∞ e^(−t) .t^((1/2)−1) dt  =(((√i) )/2)⌈((1/2))=(((√Π) )/2)×(((√i) )/)  now calculating the value of (√i)   (√i)   =(1/( (√2) ))×(√(1−1+2i))   =(1/( (√2) ))×(√(1^2 +i^2 +2×1×i))   =(1/( (√2) ))×(√((1+i)^2  ))  =(1/( (√2)))×(1+i)   =(1/( (√2) ))+i×(1/( (√2) ))  so p+iq=∫_0 ^∞ e^(ix^2 ) dx=(((√Π) )/2)×(√i) =(((√Π) )/2)((1/( (√2) ))+i(1/( (√2) )))  p=(((√Π) )/(2(√2) ))    q=(((√Π) )/(2(√2)))
p+iq=0eix2dxt=ix2i2t=ix2it=x22xdx=idtdx=idt2x=idt2it=it122dt0et.it122dti20et.t121dt=i2(12)=Π2×inowcalculatingthevalueofii=12×11+2i=12×12+i2+2×1×i=12×(1+i)2=12×(1+i)=12+i×12sop+iq=0eix2dx=Π2×i=Π2(12+i12)p=Π22q=Π22

Leave a Reply

Your email address will not be published. Required fields are marked *