Menu Close

prove-that-0-cos-x-2-dx-0-sin-x-2-dx-pi-2-2-




Question Number 113004 by malwan last updated on 10/Sep/20
prove that   _0 ∫^( ∞)  cos(x^2 )dx =  _0 ∫^( ∞) sin(x^2 )dx =((√π)/(2(√2)))
provethat0cos(x2)dx=0sin(x2)dx=π22
Answered by mathdave last updated on 10/Sep/20
solution   let y=x^2  ,x=y^(1/2)  and dx=(1/2)y^((1/2)−1)   I=(1/2)∫_0 ^∞ ((siny)/y^(1/2) )dy  recall to Maz identity which state dat  ∫_0 ^∞ ((sin(ax))/x^n )dx=((πa^(n−1) )/(2Γ(n)sin(((πn)/2))))     (a=1,n=(1/2),Γ((1/2))=(√π))  I=(1/2)∫_0 ^∞ ((siny)/y^(1/2) )dy=(1/2)•(π/(2Γ((1/2))sin((π/4))))  I=(1/4)•(π/( (√π)×(1/( (√2)))))=(((√π)×(√2))/4)=((√π)/(2(√2)))  ∫_0 ^∞ sin(x^2 )dx=((√π)/(2(√2)))          Q.E.D  by mathdave(11/09/2020)
solutionlety=x2,x=y12anddx=12y121I=120sinyy12dyrecalltoMazidentitywhichstatedat0sin(ax)xndx=πan12Γ(n)sin(πn2)(a=1,n=12,Γ(12)=π)I=120sinyy12dy=12π2Γ(12)sin(π4)I=14ππ×12=π×24=π220sin(x2)dx=π22Q.E.Dbymathdave(11/09/2020)
Commented by malwan last updated on 11/Sep/20
thank you so much
thankyousomuch
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir
Answered by mathmax by abdo last updated on 10/Sep/20
let I =∫_0 ^∞  cos(x^2 )dx and J =∫_0 ^∞  sin(x^2 )dx ⇒  I−iJ =∫_0 ^∞   e^(−ix^2 ) dx  =∫_0 ^∞  e^(−((√i)x)^2 ) dx =_(x(√i)=t)   ∫_0 ^∞  e^(−t^2 )  (dt/( (√i)))  =(1/( (√i)))∫_0 ^∞  e^(−t^2 ) dt =(1/e^((iπ)/4) )×((√π)/2)=e^(−((iπ)/4))  ×(√π)=((√π)/2){cos((π/4))−isin((π/4))}  =((√π)/2){(1/( (√2)))−(i/( (√2)))} =((√π)/(2(√2))) −i((√π)/(2(√2))) ⇒I =J =((√π)/(2(√2)))
letI=0cos(x2)dxandJ=0sin(x2)dxIiJ=0eix2dx=0e(ix)2dx=xi=t0et2dti=1i0et2dt=1eiπ4×π2=eiπ4×π=π2{cos(π4)isin(π4)}=π2{12i2}=π22iπ22I=J=π22
Commented by malwan last updated on 11/Sep/20
great Sir  thank you
greatSirthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *