Menu Close

prove-that-0-cos-x-chx-dx-2-n-0-1-n-2n-1-2n-1-2-2-




Question Number 33350 by caravan msup abdo. last updated on 14/Apr/18
prove that ∫_0 ^∞  ((cos(αx))/(chx))dx=  2 Σ_(n=0) ^∞ (−1)^n  ((2n+1)/((2n+1)^2  +α^2 )) .
provethat0cos(αx)chxdx=2n=0(1)n2n+1(2n+1)2+α2.
Commented by abdo imad last updated on 17/Apr/18
let put I  =∫_0 ^∞   ((cos(αx))/(chx))dx  I = 2 ∫_0 ^∞   ((cos(αx))/(e^x  +e^(−x) ))dx =2 ∫_0 ^∞   ((e^(−x)  cos(αx))/(1+e^(−2x) ))dx  =2 ∫_0 ^∞  (Σ_(n=0) ^∞  (−1)^n  e^(−2nx) ) .e^(−x)  cos(αx)dx  =2 Σ_(n=0) ^∞ (−1)^n   ∫_0 ^∞   e^(−(2n+1)x)  cos(αx)dx but  A_n =∫_0 ^∞  e^(−(2n+1)x)  cos(αx)dx = Re( ∫_0 ^∞  e^(−(2n+1)x)  e^(−iαx) dx)  =Re( ∫_0 ^∞   e^(−(2n+1+iα)x) dx) but we have  ∫_0 ^∞   e^(−(2n+1 +iα)x) dx =[−(1/(2n+1 +iα)) e^(−(2n+1 +iα)) ]_0 ^(+∞)   =(1/(2n+1+iα)) = ((2n+1−iα)/((2n+1)^2  +α^2 )) ⇒ A_n =((2n+1)/((2n+1)^2  +α^2 )) ⇒  I  =2 Σ_(n=0) ^∞   (((−1)^n (2n+1))/((2n+1)^2  +α^2 ))  .
letputI=0cos(αx)chxdxI=20cos(αx)ex+exdx=20excos(αx)1+e2xdx=20(n=0(1)ne2nx).excos(αx)dx=2n=0(1)n0e(2n+1)xcos(αx)dxbutAn=0e(2n+1)xcos(αx)dx=Re(0e(2n+1)xeiαxdx)=Re(0e(2n+1+iα)xdx)butwehave0e(2n+1+iα)xdx=[12n+1+iαe(2n+1+iα)]0+=12n+1+iα=2n+1iα(2n+1)2+α2An=2n+1(2n+1)2+α2I=2n=0(1)n(2n+1)(2n+1)2+α2.

Leave a Reply

Your email address will not be published. Required fields are marked *