prove-that-0-cos-x-chx-dx-2-n-0-1-n-2n-1-2n-1-2-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33350 by caravan msup abdo. last updated on 14/Apr/18 provethat∫0∞cos(αx)chxdx=2∑n=0∞(−1)n2n+1(2n+1)2+α2. Commented by abdo imad last updated on 17/Apr/18 letputI=∫0∞cos(αx)chxdxI=2∫0∞cos(αx)ex+e−xdx=2∫0∞e−xcos(αx)1+e−2xdx=2∫0∞(∑n=0∞(−1)ne−2nx).e−xcos(αx)dx=2∑n=0∞(−1)n∫0∞e−(2n+1)xcos(αx)dxbutAn=∫0∞e−(2n+1)xcos(αx)dx=Re(∫0∞e−(2n+1)xe−iαxdx)=Re(∫0∞e−(2n+1+iα)xdx)butwehave∫0∞e−(2n+1+iα)xdx=[−12n+1+iαe−(2n+1+iα)]0+∞=12n+1+iα=2n+1−iα(2n+1)2+α2⇒An=2n+1(2n+1)2+α2⇒I=2∑n=0∞(−1)n(2n+1)(2n+1)2+α2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-0-x-x-ln-e-x-1-dx-n-1-1-n-3-Next Next post: prove-that-0-1-lnx-p-1-x-2-p-n-0-1-n-2n-1-p-1-p-integr- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.