Menu Close

Prove-that-0-e-t-dt-1-




Question Number 163619 by Zaynal last updated on 08/Jan/22
Prove that;    ∫_(−∞) ^0  e^(−∣t∣)  dt = 1
Provethat;0etdt=1
Commented by alephzero last updated on 08/Jan/22
∫_(−∞) ^0 e^(−∣t∣) dt = 1  lim_(q→−∞) (∫_q ^0 e^(−∣t∣) dt) = 1  ∫e^(−∣t∣) dt =  e^t  + C    ⇔ t ≤ 0  e^(−t)  + C ⇔ t ≥ 0  ⇒ ∫_q ^0 e^(−∣t∣) dt = e^0  − e^q  = 1 − e^q  ⇔ q ≤ 0  ⇒ lim_(q→−∞) (∫_q ^0 e^(−∣t∣) dt) =  = lim_(q→−∞) (1 − e^q ) =  = lim_(q→−∞) (1) −lim_(q→−∞) (e^q )  ∀a {a ∈ R ∣ a^(−∞)  := 0}  ⇒ 1 − lim_(q→−∞) (e^q ) = 1 − 0 = 1  ⇒ ∫_(−∞) ^0 e^(−∣t∣) dt = 1             ■ Q.E.D.
0etdt=1limq(q0etdt)=1etdt=et+Ct0et+Ct0q0etdt=e0eq=1eqq0limq(q0etdt)==limq(1eq)==limq(1)limq(eq)a{aRa:=0}1limq(eq)=10=10etdt=1◼Q.E.D.
Commented by Zaynal last updated on 09/Jan/22
thank you sir. perpect
thankyousir.perpect
Answered by MJS_new last updated on 08/Jan/22
−∞<t≤0 ⇒ ∣t∣=−t  ∫_(−∞) ^0 e^(−∣t∣) dt=∫_(−∞) ^0 e^t dt=[e^t ]_(−∞) ^0 =0−(−1)=1
<t0t∣=t0etdt=0etdt=[et]0=0(1)=1

Leave a Reply

Your email address will not be published. Required fields are marked *