Menu Close

prove-that-0-e-t-t-dt-e-i-pi-4-0-e-ix-x-dx-




Question Number 28999 by abdo imad last updated on 03/Feb/18
prove that  ∫_0 ^∞   (e^(−t) /( (√t)))dt= e^(i(π/4))   ∫_0 ^∞   (e^(−ix) /( (√x)))dx.
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} }{\:\sqrt{{t}}}{dt}=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{ix}} }{\:\sqrt{{x}}}{dx}. \\ $$
Commented by abdo imad last updated on 04/Feb/18
 the ch. (√x)=t give ∫_0 ^∞   (e^(−ix) /( (√x)))dx= ∫_0 ^∞   (e^(−it^2 ) /t) 2tdt  = 2 ∫_0 ^∞  e^(−((√i)t)^2 ) dt   the ch.(√i)t=u  =2 ∫_0 ^∞    e^(−u^2 )  (du/( (√i)))             (ch.(√i)t=u)   (2/( (√i))) ((√π)/2)= ((√π)/( (√i)))     but       i=e^(i(π/2)) ⇒(√i)= e^(i(π/4))  ⇒   e^(i(π/4))  ∫_0 ^∞    (e^(−ix) /( (√x)))dx= e^(i(π/4))  e^(−(π/4))     (√π)=(√π)    from another side  the ch. (√t)=u give ∫_0 ^∞   (e^(−t) /( (√t)))dt= ∫_0 ^∞   (e^(−u^2 ) /u) (2u)du  =2 ∫_0 ^∞  e^(−u^2 ) du=2 ((√π)/2)=(√π)       so  ∫_0 ^∞   (e^(−t) /( (√t)))dt= e^(i(π/4))   ∫_0 ^∞    (e^(−ix) /( (√x)))dx.
$$\:{the}\:{ch}.\:\sqrt{{x}}={t}\:{give}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{ix}} }{\:\sqrt{{x}}}{dx}=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{it}^{\mathrm{2}} } }{{t}}\:\mathrm{2}{tdt} \\ $$$$=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\sqrt{{i}}{t}\right)^{\mathrm{2}} } {dt}\:\:\:{the}\:{ch}.\sqrt{{i}}{t}={u} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−{u}^{\mathrm{2}} } \:\frac{{du}}{\:\sqrt{{i}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\left({ch}.\sqrt{{i}}{t}={u}\right) \\ $$$$\:\frac{\mathrm{2}}{\:\sqrt{{i}}}\:\frac{\sqrt{\pi}}{\mathrm{2}}=\:\frac{\sqrt{\pi}}{\:\sqrt{{i}}}\:\:\:\:\:{but}\:\:\:\:\:\:\:{i}={e}^{{i}\frac{\pi}{\mathrm{2}}} \Rightarrow\sqrt{{i}}=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\Rightarrow \\ $$$$\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{ix}} }{\:\sqrt{{x}}}{dx}=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:{e}^{−\frac{\pi}{\mathrm{4}}} \:\:\:\:\sqrt{\pi}=\sqrt{\pi}\:\:\:\:{from}\:{another}\:{side} \\ $$$${the}\:{ch}.\:\sqrt{{t}}={u}\:{give}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} }{\:\sqrt{{t}}}{dt}=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{u}^{\mathrm{2}} } }{{u}}\:\left(\mathrm{2}{u}\right){du} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}^{\mathrm{2}} } {du}=\mathrm{2}\:\frac{\sqrt{\pi}}{\mathrm{2}}=\sqrt{\pi}\:\:\:\:\:\:\:{so} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} }{\:\sqrt{{t}}}{dt}=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{ix}} }{\:\sqrt{{x}}}{dx}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *