prove-that-0-e-t-t-dt-e-i-pi-4-0-e-ix-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 28999 by abdo imad last updated on 03/Feb/18 provethat∫0∞e−ttdt=eiπ4∫0∞e−ixxdx. Commented by abdo imad last updated on 04/Feb/18 thech.x=tgive∫0∞e−ixxdx=∫0∞e−it2t2tdt=2∫0∞e−(it)2dtthech.it=u=2∫0∞e−u2dui(ch.it=u)2iπ2=πibuti=eiπ2⇒i=eiπ4⇒eiπ4∫0∞e−ixxdx=eiπ4e−π4π=πfromanothersidethech.t=ugive∫0∞e−ttdt=∫0∞e−u2u(2u)du=2∫0∞e−u2du=2π2=πso∫0∞e−ttdt=eiπ4∫0∞e−ixxdx. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-x-2-x-2-1-2-x-2-2x-2-dx-Next Next post: prove-thst-R-e-i-x-1-x-2-dx-pi-e- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.