Menu Close

prove-that-0-e-t-t-dt-e-i-pi-4-0-e-ix-x-dx-




Question Number 28999 by abdo imad last updated on 03/Feb/18
prove that  ∫_0 ^∞   (e^(−t) /( (√t)))dt= e^(i(π/4))   ∫_0 ^∞   (e^(−ix) /( (√x)))dx.
provethat0ettdt=eiπ40eixxdx.
Commented by abdo imad last updated on 04/Feb/18
 the ch. (√x)=t give ∫_0 ^∞   (e^(−ix) /( (√x)))dx= ∫_0 ^∞   (e^(−it^2 ) /t) 2tdt  = 2 ∫_0 ^∞  e^(−((√i)t)^2 ) dt   the ch.(√i)t=u  =2 ∫_0 ^∞    e^(−u^2 )  (du/( (√i)))             (ch.(√i)t=u)   (2/( (√i))) ((√π)/2)= ((√π)/( (√i)))     but       i=e^(i(π/2)) ⇒(√i)= e^(i(π/4))  ⇒   e^(i(π/4))  ∫_0 ^∞    (e^(−ix) /( (√x)))dx= e^(i(π/4))  e^(−(π/4))     (√π)=(√π)    from another side  the ch. (√t)=u give ∫_0 ^∞   (e^(−t) /( (√t)))dt= ∫_0 ^∞   (e^(−u^2 ) /u) (2u)du  =2 ∫_0 ^∞  e^(−u^2 ) du=2 ((√π)/2)=(√π)       so  ∫_0 ^∞   (e^(−t) /( (√t)))dt= e^(i(π/4))   ∫_0 ^∞    (e^(−ix) /( (√x)))dx.
thech.x=tgive0eixxdx=0eit2t2tdt=20e(it)2dtthech.it=u=20eu2dui(ch.it=u)2iπ2=πibuti=eiπ2i=eiπ4eiπ40eixxdx=eiπ4eπ4π=πfromanothersidethech.t=ugive0ettdt=0eu2u(2u)du=20eu2du=2π2=πso0ettdt=eiπ40eixxdx.

Leave a Reply

Your email address will not be published. Required fields are marked *