Menu Close

prove-that-0-e-x-2-lim-n-0-dx-1-x-2-n-2-prove-that-1-pi-lim-n-1-3-5-2n-3-2-4-6-2n-2-n-wallis-formula-




Question Number 31106 by abdo imad last updated on 02/Mar/18
prove that  ∫_0 ^∞   e^(−x^2 ) =lim_(n→+∞)  ∫_0 ^∞     (dx/((1+x^2 )^n )) .  2) prove that  (1/( (√π))) =lim_(n→∞)  ((1.3.5....(2n−3))/(2.4.6....(2n−2))) (√n)  (wallis formula).
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}^{\mathrm{2}} } ={lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:. \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\frac{\mathrm{1}}{\:\sqrt{\pi}}\:={lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}….\left(\mathrm{2}{n}−\mathrm{3}\right)}{\mathrm{2}.\mathrm{4}.\mathrm{6}….\left(\mathrm{2}{n}−\mathrm{2}\right)}\:\sqrt{{n}} \\ $$$$\left({wallis}\:{formula}\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *