Menu Close

prove-that-0-e-x-2-n-0-e-n-2-




Question Number 30441 by abdo imad last updated on 22/Feb/18
prove that  ∫_0 ^∞   e^(−[x]^2 ) = Σ_(n≥0)  e^(−n^2 ) .
provethat0e[x]2=n0en2.
Answered by alex041103 last updated on 22/Feb/18
∫_0 ^∞   e^(−[x]^2 ) dx=Σ_(n=0) ^∞ ∫_n ^(n+1) e^(−[x]^2 ) dx=  =Σ_(n=0) ^∞ ∫_n ^(n+1) e^(−n^2 ) dx=  =Σ_(n=0) ^∞ e^(−n^2 ) ∫_n ^(n+1) dx=  =Σ_(n=0) ^∞ e^(−n^2 ) x∣_n ^(n+1) =  =Σ_(n=0) ^∞ e^(−n^2 ) (n+1−n)=Σ_(n≥0) e^(−n^2 )
0e[x]2dx=n=0n+1ne[x]2dx==n=0n+1nen2dx==n=0en2n+1ndx==n=0en2xnn+1==n=0en2(n+1n)=n0en2

Leave a Reply

Your email address will not be published. Required fields are marked *