Menu Close

prove-that-0-e-x-2-n-0-e-n-2-




Question Number 30441 by abdo imad last updated on 22/Feb/18
prove that  ∫_0 ^∞   e^(−[x]^2 ) = Σ_(n≥0)  e^(−n^2 ) .
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]^{\mathrm{2}} } =\:\sum_{{n}\geqslant\mathrm{0}} \:{e}^{−{n}^{\mathrm{2}} } . \\ $$
Answered by alex041103 last updated on 22/Feb/18
∫_0 ^∞   e^(−[x]^2 ) dx=Σ_(n=0) ^∞ ∫_n ^(n+1) e^(−[x]^2 ) dx=  =Σ_(n=0) ^∞ ∫_n ^(n+1) e^(−n^2 ) dx=  =Σ_(n=0) ^∞ e^(−n^2 ) ∫_n ^(n+1) dx=  =Σ_(n=0) ^∞ e^(−n^2 ) x∣_n ^(n+1) =  =Σ_(n=0) ^∞ e^(−n^2 ) (n+1−n)=Σ_(n≥0) e^(−n^2 )
$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]^{\mathrm{2}} } {dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{n}} {\overset{{n}+\mathrm{1}} {\int}}{e}^{−\left[{x}\right]^{\mathrm{2}} } {dx}= \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{n}} {\overset{{n}+\mathrm{1}} {\int}}{e}^{−{n}^{\mathrm{2}} } {dx}= \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{n}^{\mathrm{2}} } \underset{{n}} {\overset{{n}+\mathrm{1}} {\int}}{dx}= \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{n}^{\mathrm{2}} } {x}\mid_{{n}} ^{{n}+\mathrm{1}} = \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{n}^{\mathrm{2}} } \left({n}+\mathrm{1}−{n}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}{e}^{−{n}^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *