Menu Close

prove-that-0-e-x-lnxdx-




Question Number 127775 by Bird last updated on 02/Jan/21
prove that ∫_0 ^∞  e^(−x) lnxdx=−γ
$${prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {lnxdx}=−\gamma \\ $$
Answered by Dwaipayan Shikari last updated on 02/Jan/21
∫_0 ^∞ e^(−x) logx dx =Γ′(1)=ψ(1)Γ(1)=−γ
$$\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {logx}\:{dx}\:=\Gamma'\left(\mathrm{1}\right)=\psi\left(\mathrm{1}\right)\Gamma\left(\mathrm{1}\right)=−\gamma \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *