Menu Close

prove-that-0-f-sin-x-dx-2-0-2-f-sin-x-dx-




Question Number 17210 by Arnab Maiti last updated on 02/Jul/17
prove that ∫_0 ^( Π) f(sin x)dx=2×∫_0 ^( (Π/2)) f(sin x)dx
provethat0Πf(sinx)dx=2×0Π2f(sinx)dx
Answered by mrW1 last updated on 02/Jul/17
let I=∫_(π/2) ^π f(sin x)dx  t=π−x  x=π−t  sin x=sin (π−t)=sin t  dx=−dt  I=∫_(π/2) ^π f(sin x)dx=∫_(π/2) ^0 f(sin t) (−dt)  =−∫_(π/2) ^0 f(sin t) dt  =∫_0 ^(π/2) f(sin t) dt  =∫_0 ^(π/2) f(sin x) dx    ⇒ ∫_0 ^π f(sin x)dx=∫_0 ^(π/2) f(sin x)dx+∫_(π/2) ^π f(sin x)dx  =∫_0 ^(π/2) f(sin x)dx+∫_0 ^(π/2) f(sin x)dx  =2∫_0 ^(π/2) f(sin x)dx
letI=π2πf(sinx)dxt=πxx=πtsinx=sin(πt)=sintdx=dtI=π2πf(sinx)dx=π20f(sint)(dt)=π20f(sint)dt=0π2f(sint)dt=0π2f(sinx)dx0πf(sinx)dx=0π2f(sinx)dx+π2πf(sinx)dx=0π2f(sinx)dx+0π2f(sinx)dx=20π2f(sinx)dx
Commented by Arnab Maiti last updated on 02/Jul/17
Thank u sir. I really appriciate.
Thankusir.Ireallyappriciate.
Commented by Arnab Maiti last updated on 02/Jul/17
Sir can you give me some more questions   like that ?  Please do.
Sircanyougivemesomemorequestionslikethat?Pleasedo.
Commented by mrW1 last updated on 02/Jul/17
But I don′t have any such questions.
ButIdonthaveanysuchquestions.

Leave a Reply

Your email address will not be published. Required fields are marked *