Menu Close

Prove-that-0-i-lt-j-n-1-n-C-i-1-n-C-j-r-0-n-1-n-r-n-C-r-r-1-n-r-n-C-r-




Question Number 23471 by Tinkutara last updated on 31/Oct/17
Prove that  ΣΣ_(0≤i<j≤n) ((1/(^n C_i )) + (1/(^n C_j ))) = Σ_(r=0) ^(n−1) ((n − r)/(^n C_r )) + Σ_(r=1) ^n (r/(^n C_r ))
$${Prove}\:{that} \\ $$$$\underset{\mathrm{0}\leqslant{i}<{j}\leqslant{n}} {\Sigma\Sigma}\left(\frac{\mathrm{1}}{\:^{{n}} {C}_{{i}} }\:+\:\frac{\mathrm{1}}{\:^{{n}} {C}_{{j}} }\right)\:=\:\underset{{r}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{{n}\:−\:{r}}{\:^{{n}} {C}_{{r}} }\:+\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{r}}{\:^{{n}} {C}_{{r}} } \\ $$
Answered by Tinkutara last updated on 02/Nov/17
Commented by Tinkutara last updated on 02/Nov/17

Leave a Reply

Your email address will not be published. Required fields are marked *