prove-that-0-lim-n-0-n-1-x-n-n-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33344 by prof Abdo imad last updated on 14/Apr/18 provethat∀α∈]0,+∞[limn→∞∫0n(1−xn)nxα−1dx=Γ(α). Commented by prof Abdo imad last updated on 19/Apr/18 ∫0n(1−xn)nxα−1dx=∫R(1−xn)nxα−1χ[0,n[(x)dxletputfn(x)=(1−xn)nxα−1χ[0,n[(x)dxfn(x)→c.sf(x)=e−xxα−1if0⩽x<nandf(x)=0ifx>nalsowehavefn(x)⩽f(x)theoremofconvergencedomineegivelimn→∞∫0nfn(x)dx=∫0∞xα−1e−xdx=Γ(α). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-I-n-0-1-1-x-1-1-x-n-n-dx-and-J-n-1-n-1-x-1-x-n-n-dx-n-integr-not-0-1-prove-that-lim-I-n-0-1-1-e-x-x-dx-lim-J-n-0-1-e-1-x-x-dx-n-2-Next Next post: for-x-0-let-x-x-x-1-prove-that-x-1-x-x-n-1-1-n-x-n-2-ptove-that-1-3-prove-that-0-e-x-ln-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.