Menu Close

prove-that-0-lim-n-0-n-1-x-n-n-x-1-dx-




Question Number 33344 by prof Abdo imad last updated on 14/Apr/18
prove that  ∀ α ∈]0,+∞[  lim_(n→∞)  ∫_0 ^n  (1−(x/n))^n  x^(α−1) dx =Γ(α) .
provethatα]0,+[limn0n(1xn)nxα1dx=Γ(α).
Commented by prof Abdo imad last updated on 19/Apr/18
∫_0 ^n  (1−(x/n))^n x^(α−1) dx  = ∫_R  (1−(x/n))^n x^(α−1)  χ_([0,n[) (x)dx  let put  f_n (x) = (1−(x/n))^n x^(α−1)  χ_([0,n[) (x)dx  f_n (x)→^(c.s)   f(x)= e^(−x)  x^(α−1)  if 0≤x<n  and f(x)=0 if x>n   also we have  f_n (x) ≤ f(x) theorem of convergence dominee  give  lim_(n→∞) ∫_0 ^n   f_n (x)dx  = ∫_0 ^∞   x^(α−1)  e^(−x) dx =Γ(α).
0n(1xn)nxα1dx=R(1xn)nxα1χ[0,n[(x)dxletputfn(x)=(1xn)nxα1χ[0,n[(x)dxfn(x)c.sf(x)=exxα1if0x<nandf(x)=0ifx>nalsowehavefn(x)f(x)theoremofconvergencedomineegivelimn0nfn(x)dx=0xα1exdx=Γ(α).

Leave a Reply

Your email address will not be published. Required fields are marked *