Question Number 162535 by mnjuly1970 last updated on 30/Dec/21

Commented by Ar Brandon last updated on 30/Dec/21

Commented by amin96 last updated on 30/Dec/21

Commented by mnjuly1970 last updated on 30/Dec/21

Answered by Ar Brandon last updated on 24/Mar/22

Commented by mnjuly1970 last updated on 30/Dec/21

Answered by mindispower last updated on 30/Dec/21
![=−∫_0 ^∞ −((ln(x))/((x^2 +16)(x^2 +1)))dx=−(1/(15))∫_0 ^∞ ((ln(x))/(x^2 +1))+((ln(x))/(x^2 +16))dx =(1/(15))(−∫_0 ^∞ ((ln(x))/(x^2 +1))dx+∫((ln(4y))/(16(y^2 +1)))4y =−(3/(60))∫_0 ^∞ ((ln(x))/(1+x^2 ))+((ln(4))/(60))∫_0 ^∞ (dx/(1+x^2 )) ∫_0 ^∞ ((ln(x))/(1+x^2 ))dx,x→(1/x)⇒=−∫_0 ^∞ ((ln(x))/(1+x^2 ))dx ⇒∫_0 ^∞ ((ln(x))/(1+x^2 ))dx=0 Ω=((ln(4))/(60))∫_0 ^∞ (dx/(1+x^2 ))=((ln(4))/(60))lim_(x→∞) [tan^(−1) (z)]_0 ^x =((ln(4))/(60)).(π/2)=((πln(2))/(60))](https://www.tinkutara.com/question/Q162600.png)