Menu Close

prove-that-0-ln-1-x-x-4-17x-2-16-dx-pi-60-ln-2-




Question Number 162535 by mnjuly1970 last updated on 30/Dec/21
       prove that  Ω = ∫_0 ^( ∞) ((  ln ((1/x) ))/( x^( 4)  + 17x^( 2)  + 16)) dx=^?  (π/(60)) ln(2)
provethatΩ=0ln(1x)x4+17x2+16dx=?π60ln(2)
Commented by Ar Brandon last updated on 30/Dec/21
Synthax error, Sir. Your dx is missing.  Haha 😅😁
Synthaxerror,Sir.Yourdxismissing.Haha 😅😁
Commented by amin96 last updated on 30/Dec/21
  very big mistake😂😂
very big mistake😂😂
Commented by mnjuly1970 last updated on 30/Dec/21
 yes you are right sir  ...
yesyouarerightsir
Answered by Ar Brandon last updated on 24/Mar/22
Ω=∫_0 ^∞ ((ln((1/x)))/(x^4 +17x^2 +16))dx=−∫_0 ^∞ ((lnx)/(x^4 +17x^2 +16))dx  ϕ(z)=(((lnz)^2 )/(z^4 +17z^2 +16)) ,poles:(z^2 +16)(z^2 +1)=0⇒z_1 =4e^((π/2)i) ,z_2 =4e^(−(π/2)i) ,z_3 =e^((π/2)i) ,z_4 =e^(−(π/2)i)   Ω=−(1/2)Re(Res(ϕ, z_1 )+Res(ϕ, z_2 )+Res(ϕ, z_3 )+Res(ϕ, z_4 ))  Res (ϕ, z_1 )=lim_(z→z_1 ) ((((lnz)^2 )/((z−z_2 )(z−z_3 )(z−z_4 ))))=(((ln4+(π/2)i)^2 )/((8i)(3i)(5i)))=(i/(120))(ln^2 4−(π^2 /4)+iπln4)  Res(ϕ, z_2 )=lim_(z→z_2 ) ((((lnz)^2 )/((z−z_1 )(z−z_3 )(z−z_4 ))))=(((ln4−(π/2)i)^2 )/((−8i)(−5i)(−3i)))=−(i/(120))(ln^2 4+(π^2 /4)−iπln4)  Res(ϕ, z_3 )=lim_(z→z_3 ) ((((lnz)^2 )/((z−z_1 )(z−z_2 )(z−z_4 ))))=((((π/2)i)^2 )/((−3i)(5i)(2i)))=(i/(30))((π^2 /4))=i(π^2 /(120))  Res(ϕ,z_4 )=lim_(z→z_4 ) ((((lnz)^2 )/((z−z_1 )(z−z_2 )(z−z_3 ))))=(((−(π/2)i)^2 )/((−5i)(3i)(−2i)))=−(i/(30))((π^2 /4))=−i(π^2 /(120))  Ω=−(1/2)(−((πln4)/(120))−((πln4)/(120)))=((πln4)/(120))=(π/(60))ln(2)
Ω=0ln(1x)x4+17x2+16dx=0lnxx4+17x2+16dxφ(z)=(lnz)2z4+17z2+16,poles:(z2+16)(z2+1)=0z1=4eπ2i,z2=4eπ2i,z3=eπ2i,z4=eπ2iΩ=12Re(Res(φ,z1)+Res(φ,z2)+Res(φ,z3)+Res(φ,z4))Res(φ,z1)=limzz1((lnz)2(zz2)(zz3)(zz4))=(ln4+π2i)2(8i)(3i)(5i)=i120(ln24π24+iπln4)Res(φ,z2)=limzz2((lnz)2(zz1)(zz3)(zz4))=(ln4π2i)2(8i)(5i)(3i)=i120(ln24+π24iπln4)Res(φ,z3)=limzz3((lnz)2(zz1)(zz2)(zz4))=(π2i)2(3i)(5i)(2i)=i30(π24)=iπ2120Res(φ,z4)=limzz4((lnz)2(zz1)(zz2)(zz3))=(π2i)2(5i)(3i)(2i)=i30(π24)=iπ2120Ω=12(πln4120πln4120)=πln4120=π60ln(2)
Commented by mnjuly1970 last updated on 30/Dec/21
   very nice solution ..residues theory..      thanks alot sir brandon..
verynicesolution..residuestheory..thanksalotsirbrandon..
Answered by mindispower last updated on 30/Dec/21
=−∫_0 ^∞ −((ln(x))/((x^2 +16)(x^2 +1)))dx=−(1/(15))∫_0 ^∞ ((ln(x))/(x^2 +1))+((ln(x))/(x^2 +16))dx  =(1/(15))(−∫_0 ^∞ ((ln(x))/(x^2 +1))dx+∫((ln(4y))/(16(y^2 +1)))4y  =−(3/(60))∫_0 ^∞ ((ln(x))/(1+x^2 ))+((ln(4))/(60))∫_0 ^∞ (dx/(1+x^2 ))  ∫_0 ^∞ ((ln(x))/(1+x^2 ))dx,x→(1/x)⇒=−∫_0 ^∞ ((ln(x))/(1+x^2 ))dx  ⇒∫_0 ^∞ ((ln(x))/(1+x^2 ))dx=0  Ω=((ln(4))/(60))∫_0 ^∞ (dx/(1+x^2 ))=((ln(4))/(60))lim_(x→∞) [tan^(−1) (z)]_0 ^x   =((ln(4))/(60)).(π/2)=((πln(2))/(60))
=0ln(x)(x2+16)(x2+1)dx=1150ln(x)x2+1+ln(x)x2+16dx=115(0ln(x)x2+1dx+ln(4y)16(y2+1)4y=3600ln(x)1+x2+ln(4)600dx1+x20ln(x)1+x2dx,x1x⇒=0ln(x)1+x2dx0ln(x)1+x2dx=0Ω=ln(4)600dx1+x2=ln(4)60limx[tan1(z)]0x=ln(4)60.π2=πln(2)60

Leave a Reply

Your email address will not be published. Required fields are marked *